精英家教网 > 高中数学 > 题目详情

已知直角梯形中,是边长为2的等边三角形,.沿折起,使处,且;然后再将沿折起,使处,且面在面的同侧.

(Ⅰ) 求证:平面
(Ⅱ) 求平面与平面所构成的锐二面角的余弦值.

(Ⅰ)详见解析;(Ⅱ)平面与平面所构成的锐二面角的余弦值为

解析试题分析:(Ⅰ)在直角梯形ABCD中,由平面几何知识,又,可证得平面;(Ⅱ)建立空间直角坐标系,利用法向量可求出二面角的余弦值.
试题解析:(Ⅰ)证明:在直角梯形ABCD中,可算得
根据勾股定理可得,即:,又平面
(Ⅱ)以C为原点,CE为y轴,CB为z轴建立空间直角坐标系,如图,则,,作,因为面,易知,,且
从平面图形中可知:,易知面CDE的法向量为
设面PAD的法向量为,且
解得
故所求平面与平面所构成的锐二面角的余弦值为

考点:1、线面垂直的判定,2、二面角的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面, ,且

(1)求证://平面;
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知长方体中,底面为正方形,,点在棱上,且

(Ⅰ)试在棱上确定一点,使得直线平面,并证明;
(Ⅱ)若动点在底面内,且,请说明点的轨迹,并探求长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在几何体中,平面是等腰直角三角形,,且,点的中点.

(Ⅰ)求证:平面
(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,

(Ⅰ)求证:平面平面
(Ⅱ)若所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱的侧棱长为3,,且分别是棱上的动点,且
(1)证明:无论在何处,总有
(2)当三棱柱.的体积取得最大值时,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .

(Ⅰ) 证明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角的大小.

查看答案和解析>>

同步练习册答案