已知直角梯形
中,
是边长为2的等边三角形,
.沿
将
折起,使
至
处,且
;然后再将
沿
折起,使
至
处,且面
面
,
和
在面
的同侧.![]()
![]()
(Ⅰ) 求证:
平面
;
(Ⅱ) 求平面
与平面
所构成的锐二面角的余弦值.
科目:高中数学 来源: 题型:解答题
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知长方体
中,底面
为正方形,
面
,
,
,点
在棱
上,且
.![]()
(Ⅰ)试在棱
上确定一点
,使得直线
平面
,并证明;
(Ⅱ)若动点
在底面
内,且
,请说明点
的轨迹,并探求
长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直三棱柱
的侧棱长为3,
,且
,
、
分别是棱
、
上的动点,且![]()
(1)证明:无论
在何处,总有
;
(2)当三棱柱
.的体积取得最大值时,求异面直线
与
所成角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,
. ![]()
(Ⅰ) 证明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角
的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com