如图已知:菱形所在平面与直角梯形所在平面互相垂直,,点分别是线段的中点.
(1)求证:平面平面;
(2)点在直线上,且//平面,求平面与平面所成角的余弦值。
(1)证明详见解析;(2).
解析试题分析:(1)先证,由面面垂直的性质定理得到平面,所以,由勾股定理证,所以由线面垂直的判定定理得平面,所以面面垂直的判定定理得平面平面;(2)首先建立空间直角坐标系,再写出各点坐标,由共面向量定理,得,所以求出,得出点的坐标是:,由(1)得平面的法向量是,根据条件得平面的法向量是,所以.
试题解析:(1)证明:在菱形中,因为,所以是等边三角形,
又是线段的中点,所以,
因为平面平面,所以平面,所以; 2分
在直角梯形中,,,得到:,
从而,所以, 4分
所以平面,又平面,所以平面平面; 6分
(2)由(1)平面,如图,分别以所在直线为轴,轴,轴建立空间直角坐标系,
则,
7分
设点的坐标是,则共面,
所以存在实数使得:
,
得到:.即点的坐标是:, 8分
由(1)知道:平面的法向量是,
设平面的法向量是,
则:, 9分
令,则,即,
所以, 11分
即平面与平面
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,点M是A1B的中点,点N是B1C的中点,连接MN
(Ⅰ)证明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(Ⅰ)证明:平面;
(Ⅱ)证明:∥平面;
(Ⅲ)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.
(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com