如图,在三棱锥中,,,,设顶点A在底面上的射影为R.
(Ⅰ)求证: ;
(Ⅱ)设点在棱上,且,试求二面角的余弦值.
(Ⅰ)见解析;(Ⅱ).
解析试题分析:(Ⅰ)借助几何体的中线面垂直,证明BCDE为正方形,达到证明线线垂直的目的;(Ⅱ)方法一利用定义法做出二面角,通过解三角形求解二面角的平面角;方法二建立利用空间向量法,通过两个半平面的法向量借助夹角公式求解.
试题解析:证明:方法一:由平面,得,
又,则平面,
故, 3分
同理可得,则为矩形,
又,则为正方形,故. 5分
方法二:由已知可得,设为的中点,则,则平面,故平面平面,则顶点在底面上的射影必在,故.
(Ⅱ)方法一:由(I)的证明过程知平面,过作,垂足为,则易证得,故即为二面角的平面角, 8分
由已知可得,则,故,则,
又,则, 10分
故,即二面角的余弦值为 12分
方法二: 由(I)的证明过程知为正方形,如图建立坐标系,
则,,,可得, 8分
则,,易知平面
的一个法向量为,设平面的一个法向量为,则由得 10分
则,即二面角的余弦值为. 12分
考点:1.垂直关系的证明;2.二面角;3.空间向量.
科目:高中数学 来源: 题型:解答题
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.
(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(Ⅰ)证明:平面;
(Ⅱ)证明:∥平面;
(Ⅲ)线段上是否存在点,使与所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直三棱柱的侧棱长为3,,且,、分别是棱、上的动点,且
(1)证明:无论在何处,总有;
(2)当三棱柱.的体积取得最大值时,求异面直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2.
(I)求二面角B-AF-D的大小;
(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.
(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com