精英家教网 > 高中数学 > 题目详情
3.已知$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(2cosα,2sinα),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{13}$.

分析 运用向量的模的公式,求出|$\overrightarrow{a}$|,|$\overrightarrow{b}$|,再由向量数量积的定义可得$\overrightarrow{a}$•$\overrightarrow{b}$,运用向量的模的平方即为向量的平方,计算即可得到所求值.

解答 解:$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(2cosα,2sinα),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,
可得|$\overrightarrow{a}$|=$\sqrt{\frac{1}{4}+\frac{3}{4}}$=1,|$\overrightarrow{b}$|=$\sqrt{4co{s}^{2}α+4si{n}^{2}α}$=2,
$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos60°=1×2×$\frac{1}{2}$=1,
则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{(\overrightarrow{a}-2\overrightarrow{b})^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}-4\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{1+4×4-4×1}$=$\sqrt{13}$.
故答案为:$\sqrt{13}$.

点评 本题考查向量的数量积的定义和性质,主要是向量的模的平方即为向量的平方,以及模的公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,圆x2+y2-2y=0的圆心与椭圆C的上顶点重合,点P的纵坐标为$\frac{5}{3}$.
(1)求椭圆C的标准方程;
(2)若斜率为2的直线l与椭圆C交于A,B两点,探究:在椭圆C上是否存在一点Q,使得$\overrightarrow{PA}=\overrightarrow{BQ}$,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将参加夏令营的100名学生编号为:001,002,…,100,采用系统抽样方法抽取一个容量为20的样本,且随机抽得的号码为003.这100名学生分住在三个营区,从001到015在第 I营区,从016到055住在第 II营区,从056到100在第 III营区,则第 II个营区被抽中的人数应为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知一圆的圆心坐标为C(2,-1),且被直线l:x-y-1=0截得的弦长为2$\sqrt{2}$,则此圆的方程(x-2)2+(y+1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知角α的终边在y=$\frac{1}{3}$x上,则sinα=$±\frac{{\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和为Sn,且a1=1,an+1=3Sn(n≥1,n∈N*)第k项满足750<ak<900,则k等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解关于x的不等式ax2+(a-1)x-1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图1)和女生身高情况的频率分布直方图(图2).已知图1中身高在170~175cm的男生人数有16人.

(1)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分比)的把握认为“身高与性别有关”?
≥170cm<170cm总计
男生身高
女生身高
总计
(2)在上述80名学生中,从身高在170-175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式及参考数据如下:${k^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0250.6100.0050.001
k05.0244.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列1-b≥0满足Sn+an=2n,n∈N*,其中Sn是数列{an}的前n项和.
(Ⅰ)计算a1,a2,a3,a4的值;
(Ⅱ)猜想an的表达式,并用数学归纳法证明你的猜想.

查看答案和解析>>

同步练习册答案