精英家教网 > 高中数学 > 题目详情
18.已知角α的终边在y=$\frac{1}{3}$x上,则sinα=$±\frac{{\sqrt{10}}}{10}$.

分析 根据三角函数的定义,直接求出.

解答 解:角α的终边在y=$\frac{1}{3}$x上任取一点(3a,a),
∴r=$\sqrt{10}$|a|,
∴sinα=$\frac{y}{r}$=$\frac{a}{\sqrt{10}|a|}$=±$\frac{\sqrt{10}}{10}$,
故答案为:$±\frac{{\sqrt{10}}}{10}$

点评 本题考查任意角的三角函数的定义,终边相同的角,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图是由正三棱椎与正三棱柱组合而成的几何体的三视图,该几何体的顶点都在半径为R的球面上,则R=(  )
A.1B.$\sqrt{2}$C.$\frac{1+\sqrt{2}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC的内角A,B,C的对边分别为,且2acosC=2b-c.
(1)求A的大小;
(2)若△ABC为锐角三角形,求sinB+sinC的取值范围;
(3)若$a=2\sqrt{3}$,且△ABC的面积为$2\sqrt{3}$,求cos2B+cos2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A是△BCD所在平面外一点,E、F分别是BC和AD的中点,若BD⊥AC,BD=AC,则EF与BD所成角的大小是45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(II)若PD=AD,求AD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(2cosα,2sinα),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设$f(x)=lg({\frac{2}{1-x}+a})$是奇函数,则使f(x)>1的x的取值范围是$({\frac{9}{11}.1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{{x}^{2}}{m+5}$-$\frac{{y}^{2}}{20-m}$=1的焦距是(  )
A.4B.6C.10D.与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足2cos C(a cos B+b cos A )=c.
①求C;    
②若c=$\sqrt{7}$,ab=6.
求△ABC的周长.

查看答案和解析>>

同步练习册答案