分析 根据若f(x)是奇函数且在x=0有定义,则f(0)=0,即可解出a.再根据对数函数的单调性解不等式得到答案.
解答 解:依题意,得f(0)=0,即lg(2+a)=0,
所以,a=-1,f(x)=lg $\frac{1+x}{1-x}$,
由f(x)>1,得lg $\frac{1+x}{1-x}$>1,
故$\frac{1+x}{1-x}$>10,解得:$\frac{9}{11}$<x<1,
故答案为:$({\frac{9}{11}.1})$.
点评 题主要考查函数的奇偶性和对数不等式的解法.在解对数不等式时注意对数函数的单调性,即:底数大于1时单调递增,底数大于0小于1时单调递减.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{7}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com