精英家教网 > 高中数学 > 题目详情
6.已知A是△BCD所在平面外一点,E、F分别是BC和AD的中点,若BD⊥AC,BD=AC,则EF与BD所成角的大小是45°.

分析 取CD的中点G,利用三角形中位线的性质找出异面直线成的角∠FEG,把此角放在一个三角形中,解此三角形,求出此角的大小.

解答 解:取CD的中点G,连接EG、FG,
则EG∥BD,
所以相交直线EF与EG所成的锐角或直角即为异面直线EF与BD所成的角.
在Rt△EGF中,求得∠FEG=45°,
即异面直线EF与BD所成的角为45°.

点评 本题考查异面直线及其所成的角,及求异面直线成的角,属于中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设两个非零向量$\vec a$与$\vec b$不共线.
(1)若$\overrightarrow{AB}=\vec a+\vec b,\overrightarrow{BC}=2\vec a+8\vec b,\overrightarrow{CD}=3({\vec a-\vec b})$,求证:A,B,D三点共线
(2)试确定实数k,使$k\vec a+\vec b$和$\vec a+k\vec b$反向共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,若sinA:sinB:sinC=3:5:7,则cosC=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将参加夏令营的100名学生编号为:001,002,…,100,采用系统抽样方法抽取一个容量为20的样本,且随机抽得的号码为003.这100名学生分住在三个营区,从001到015在第 I营区,从016到055住在第 II营区,从056到100在第 III营区,则第 II个营区被抽中的人数应为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在锐角△ABC中,若sinA=3sinBsinC,则tanAtanBtanC的最小值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知一圆的圆心坐标为C(2,-1),且被直线l:x-y-1=0截得的弦长为2$\sqrt{2}$,则此圆的方程(x-2)2+(y+1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知角α的终边在y=$\frac{1}{3}$x上,则sinα=$±\frac{{\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解关于x的不等式ax2+(a-1)x-1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A(1,-2),B(2,1),C(3,2),D(x,y)
(1)求$3\overrightarrow{AB}-2\overrightarrow{AC}+\overrightarrow{BC}$的坐标;
(2)若A、B、C、D四点构成平行四边形ABCD,求点D的坐标.

查看答案和解析>>

同步练习册答案