分析 (1)利用向量共线定理即可证明.
(2)利用向量共线定理即可证明.
解答 (1)证明:∵$\overrightarrow{AB}=\vec a+\vec b,\overrightarrow{BC}=2\vec a+8\vec b,\overrightarrow{CD}=3({\vec a-\vec b})$,
∴$\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{CD}=2\vec a+8\vec b+3({\vec a-\vec b})$=$2\vec a+8\vec b+3\vec a-3\vec b=5({\vec a+\vec b})=5\overrightarrow{AB}$.
∴$\overrightarrow{AB},\overrightarrow{BD}$共线,又它们有公共点B,∴A,B,D三点共线.
(2)解:∵$k\vec a+\vec b$与$\vec a+k\vec b$反向共线,∴存在实数λ(λ<0),使$k\vec a+\vec b=λ({\vec a+k\vec b})$,
即$k\vec a+\vec b=λ\vec a+λk\vec b$,∴.$({k-λ})\vec a=({λk-1})\vec b$.
∵$\vec a,\vec b$是不共线的两个非零向量,∴k-λ=λk-1=0,
∴k2-1=0,∴k=±1,
∵λ<0,∴k=-1
点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{1+\sqrt{2}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 数学成绩及格 | 数学成绩不及格 | 合计 | |
| 比较细心 | 45 | 10 | 55 |
| 比较粗心 | 15 | 30 | 45 |
| 合计 | 60 | 40 | 100 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com