精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=log2(x2-2ax+3).
(1)若a=1,求f(x)的值域;
(2)若a=2,求函数f(x)的定义域及单调区间;
(3)若函数f(x)的定义域为R,求实数a的取值范围;
(4)若函数f(x)的值域为R,求实数a的取值范围;
(5)若函数f(x)在[2,+∞)上单调递增,求实数a的取值范围;
(6)若函数f(x)在[-1,+∞)上有意义,求实数a的取值范围.

分析 (1)求出y=x2-2ax+3的值域,利用对数函数的单调性得出f(x)的值域;
(2)令x2-2ax+3>0解出f(x)的定义域,根据复合函数的单调性得出f(x)的单调性;
(3)令x2-2ax+3>0恒成立解出a的范围;
(4)令y=x2-2ax+3得最小值≤0即可;
(5)根据符合函数的单调性得出y=x2-2ax+3在[2,+∞)上单调递增,且x2-2ax+3>0在[2,+∞)上恒成立,列不等式组解出a的范围;
(6)令x2-2ax+3>0在[-1,+∞)上恒成立,列不等式组解出a的范围

解答 解:(1)a=1时,f(x)=log2(x2-2x+3)=log2[(x-1)2+2],
∵(x-1)2+2≥2,∴f(x)≥log22=1,
∴f(x)的值域为[1,+∞).
(2)当a=2时,f(x)=log2(x2-4x+3),
令x2-4x+3>0得x<1或x>3,
∴f(x)的定义域为(-∞,1)∪(3,+∞).
由二次函数的性质可知y=x2-4x+3在(-∞,1)单调递减,在(3,+∞)单调递增,
∴f(x)=log2(x2-4x+3)在(-∞,1)单调递减,在(3,+∞)单调递增.
(3)若f(x)的定义域为R,则x2-2ax+3>0恒成立,
∴△=4a2-12<0,解得-$\sqrt{3}$<a<$\sqrt{3}$.
(4)设A为y=x2-2ax+3的值域,则A=[3-a2,+∞),
若f(x)的值域为R,则(0,+∞)⊆A,∴3-a2≤0,解得a$≤-\sqrt{3}$或a$≥\sqrt{3}$.
(5)若函数f(x)在[2,+∞)上单调递增,
则y=x2-2ax+3在[2,+∞)上单调递增,且x2-2ax+3>0在[2,+∞)上恒成立,
∴$\left\{\begin{array}{l}{a≤2}\\{7-4a>0}\end{array}\right.$,解得a<$\frac{7}{4}$,
(6)若函数f(x)在[-1,+∞)上有意义,则x2-2ax+3>0在[-1,+∞)上恒成立,
∴$\left\{\begin{array}{l}{a≤-1}\\{4+2a>0}\end{array}\right.$,或△=4a2-12<0,或$\left\{\begin{array}{l}{△=4{a}^{2}-12=0}\\{a<-1}\end{array}\right.$,解得-2<a≤-1或-$\sqrt{3}<a<\sqrt{3}$或a=-$\sqrt{3}$.
综上,a的范围是(-2,$\sqrt{3}$).

点评 本题考查了对数函数的性质,二次函数的性质,符合函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的图象相邻两个对称中心之间的距离为$\frac{π}{2}$,则f(x)的一个单调递增区间为(  )
A.(-$\frac{π}{6}$,$\frac{π}{3}$)B.(-$\frac{π}{3}$,$\frac{π}{6}$)C.($\frac{π}{6}$,$\frac{2π}{3}$)D.($\frac{π}{3}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.
投入促销费用x(万元)2356
商场实际营销额y(万元)100200300400
(1)求出x,y之间的回归直线方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?
(注:$b=\frac{{\sum _{i=1}^n({{x_i}-\bar x})({{y_i}-\bar y})}}{{\sum _{i=1}^n{{({{x_i}-\bar x})}^2}}}=\frac{{\sum _{i=1}^n{x_i}{y_i}-n•\bar x•\bar y}}{{\sum _{i=1}^nx_i^2-n•{{\bar x}^2}}},a=\bar y-b•\bar x$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知递增数列{an},a1=2,其前n项和为Sn,且满足${a_n}^2+2=3({S_n}+{S_{n-1}})(n≥2)$.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)若数列{bn}满足${log_2}\frac{b_n}{a_n}=n$,求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,梯形ABCD中,AB∥CD,AB=2,CD=4,BC=AD=$\sqrt{5}$,E和F分别为AD与BC的中点,对于常数λ,在梯形ABCD的四条边上恰好有8个不同的点P,使得$\overrightarrow{PE}$•$\overrightarrow{PF}$=λ成立,则实数λ的取值范围是(  )
A.(-$\frac{5}{4}$,-$\frac{9}{20}$)B.(-$\frac{5}{4}$,$\frac{11}{4}$)C.(-$\frac{1}{4}$,$\frac{11}{4}$)D.(-$\frac{9}{20}$,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A、B、C所对的边分别为a,b,c,已知(2c-a)cosB=bcosA.
(1)求角B;
(2)若b=6,c=2a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设两个非零向量$\vec a$与$\vec b$不共线.
(1)若$\overrightarrow{AB}=\vec a+\vec b,\overrightarrow{BC}=2\vec a+8\vec b,\overrightarrow{CD}=3({\vec a-\vec b})$,求证:A,B,D三点共线
(2)试确定实数k,使$k\vec a+\vec b$和$\vec a+k\vec b$反向共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,圆x2+y2-2y=0的圆心与椭圆C的上顶点重合,点P的纵坐标为$\frac{5}{3}$.
(1)求椭圆C的标准方程;
(2)若斜率为2的直线l与椭圆C交于A,B两点,探究:在椭圆C上是否存在一点Q,使得$\overrightarrow{PA}=\overrightarrow{BQ}$,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将参加夏令营的100名学生编号为:001,002,…,100,采用系统抽样方法抽取一个容量为20的样本,且随机抽得的号码为003.这100名学生分住在三个营区,从001到015在第 I营区,从016到055住在第 II营区,从056到100在第 III营区,则第 II个营区被抽中的人数应为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案