精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A、B、C所对的边分别为a,b,c,已知(2c-a)cosB=bcosA.
(1)求角B;
(2)若b=6,c=2a,求△ABC的面积.

分析 (1)利用正弦定理以及两角和与差的三角函数化简求解即可.
(2)利用余弦定理集合以下条件求出3边的长度,然后求解三角形的面积.

解答 解:(1)由(2c-a)cosB=bcosA,得(2sinC-sinA)cosB=sinBcosA,
即2sinCcosB=sinAcosB+sinBcosA,即2sinCcosB=sin(A+B),即2sinCcosB=sinC.
因为sinC≠0,所以$cosB=\frac{1}{2}$,而0<B<π,所以$B=\frac{π}{3}$.
(2)由b=6,$B=\frac{π}{3}$,得a2+c2-ac=36.
又因为c=2a,所以a2+4a2-2a2=36,即$a=2\sqrt{3}$,则$c=4\sqrt{3}$.
于是${S_{△ABC}}=\frac{1}{2}acsinB=\frac{1}{2}×2\sqrt{3}×4\sqrt{3}×\frac{{\sqrt{3}}}{2}=6\sqrt{3}$.

点评 本题考查正弦定理以及余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x-1|,x∈R.
(1)解不等式f(x)≥2-|x+1|;
(2)若对于x,y∈R,有$|{x-y-1}|≤\frac{1}{3}$,$|{2y+1}|≤\frac{1}{6}$,求证:f(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C的对边分别为a,b,c,则“a=2bcosC”是“△ABC是等腰三角形”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.24+πB.24-3πC.24-πD.24-2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log2(x2-2ax+3).
(1)若a=1,求f(x)的值域;
(2)若a=2,求函数f(x)的定义域及单调区间;
(3)若函数f(x)的定义域为R,求实数a的取值范围;
(4)若函数f(x)的值域为R,求实数a的取值范围;
(5)若函数f(x)在[2,+∞)上单调递增,求实数a的取值范围;
(6)若函数f(x)在[-1,+∞)上有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高二2班学生每周用于数学学习的时间x(单位:h)与数学成绩y(单位:分)之间有如表数据:
x24152319161120161713
y92799789644783687159
(Ⅰ)求线性回归方程;
(Ⅱ)该班某同学每周用于数学学习的时间为18小时,试预测该生数学成绩.
参考数据:$\overline x=17.4$,$\overline y=74.9$,$\sum_{i=1}^{10}{{x_i}^2=3182}$,$\sum_{i=1}^{10}{{y_i}^2=58375}$,$\sum_{i=1}^{10}{{x_i}{y_i}=13578}$
回归直线方程参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{c}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=$\frac{15}{2}$,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,2),则b-a=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=asinx+3cosx的最大值为5,则常数a=±4.

查看答案和解析>>

同步练习册答案