| x | 24 | 15 | 23 | 19 | 16 | 11 | 20 | 16 | 17 | 13 |
| y | 92 | 79 | 97 | 89 | 64 | 47 | 83 | 68 | 71 | 59 |
分析 (Ⅰ)利用已知条件求出回归直线方程的几何量,得到回归直线方程,
(Ⅱ)将x=18代入回归方程,求出y的预报值即可.
解答 解:(Ⅰ)$\hat b=\frac{{\sum_{i=1}^{10}{{x_i}{y_i}}-10\overline x\overline y}}{{\sum_{i=1}^{10}{{x_i}^2}-10{{\overline x}^2}}}=\frac{545.4}{154.4}≈3.53$,
$\hat a=\overline y-b\overline x=74.9-3.53×17.4≈13.5$,
因此可求得回归直线方程$\hat y=3.53x+13.5$.
(Ⅱ)当x=18时,$\hat y=3.53×18+13.5=77.04≈77$,
故该同学预计可得77分左右.
点评 本题考查回归直线方程的求法,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{8}{3}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | K2在任何相互独立问题中都可以用来检验有关还是无关 | |
| B. | K2的值越大,两个事件的相关性越大 | |
| C. | K2是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合 | |
| D. | K2的观测值的计算公式为K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com