3£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£¬ÇÒ¦Á¡Ê[0£¬¦Ð]£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2sin¦È£®
£¨¢ñ£©ÇóC1µÄ¼«×ø±ê·½³ÌÓëC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôPÊÇC1ÉÏÈÎÒâÒ»µã£¬¹ýµãPµÄÖ±Ïßl½»C2ÓÚµãM£¬N£¬Çó|PM|•|PN|µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Çó³öC1µÄÆÕͨ·½³Ì£¬¼´¿ÉÇóC1µÄ¼«×ø±ê·½³Ì£¬ÀûÓü«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯·½·¨µÃ³öC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³Ì£¬´úÈëC2µÄÖ±½Ç×ø±ê·½³ÌµÃ£¨x0+tcos¦Á£©2+£¨y0+tsin¦Á+1£©2=1£¬ÓÉÖ±Ïß²ÎÊý·½³ÌÖÐtµÄ¼¸ºÎÒâÒå¿ÉÖª|PM|•|PN|=|1+2y0|£¬¼´¿ÉÇó|PM|•|PN|µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÏûÈ¥²ÎÊý¿ÉµÃx2+y2=1£¬ÓɦÁ¡Ê[0£¬¦Ð£©£¬Ôò-1?x?1£¬0?y?1£¬
¡àÇúÏßC1ÊÇx2+y2=1ÔÚxÖáÉÏ·½µÄ²¿·Ö£¬
¡àÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=1£¨0?¦È?¦Ð£©£®¡­£¨2·Ö£©
ÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+£¨y+1£©2=1£»¡­£¨5·Ö£©
£¨2£©ÉèP£¨x0£¬y2£©£¬Ôò0?y0?1£¬Ö±ÏßlµÄÇãб½ÇΪ¦Á£¬
ÔòÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º{x=x0+tcos¦Áy=y0+tsin¦Á}£¨tΪ²ÎÊý£©£®¡­£¨7·Ö£©
´úÈëC2µÄÖ±½Ç×ø±ê·½³ÌµÃ£¨x0+tcos¦Á£©2+£¨y0+tsin¦Á+1£©2=1£¬
ÓÉÖ±Ïß²ÎÊý·½³ÌÖÐtµÄ¼¸ºÎÒâÒå¿ÉÖª|PM|?|PN|=|1+2y0|£¬
ÒòΪ0?y2?1£¬
¡à|PM|?|PN|=¡Ê[1£¬3]¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±êϵµÄת»¯£¬Ö±ÏߵIJÎÊý·½³Ì£¬¿¼²éת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªtan¦Á£¬$\frac{1}{tan¦Á}$ÊǹØÓÚxµÄ·½³Ìx2-kx+k2-3=0µÄÁ½¸öʵ¸ù£¬ÇÒ3¦Ð£¼¦Á£¼$\frac{7}{2}$¦Ð£¬Ôòcos¦Á+sin¦Á=£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\sqrt{2}$C£®-$\sqrt{2}$D£®-$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³Ð£¸ß¶þ2°àѧÉúÿÖÜÓÃÓÚÊýѧѧϰµÄʱ¼äx£¨µ¥Î»£ºh£©ÓëÊýѧ³É¼¨y£¨µ¥Î»£º·Ö£©Ö®¼äÓÐÈç±íÊý¾Ý£º
x24152319161120161713
y92799789644783687159
£¨¢ñ£©ÇóÏßÐԻع鷽³Ì£»
£¨¢ò£©¸Ã°àijͬѧÿÖÜÓÃÓÚÊýѧѧϰµÄʱ¼äΪ18Сʱ£¬ÊÔÔ¤²â¸ÃÉúÊýѧ³É¼¨£®
²Î¿¼Êý¾Ý£º$\overline x=17.4$£¬$\overline y=74.9$£¬$\sum_{i=1}^{10}{{x_i}^2=3182}$£¬$\sum_{i=1}^{10}{{y_i}^2=58375}$£¬$\sum_{i=1}^{10}{{x_i}{y_i}=13578}$
»Ø¹éÖ±Ïß·½³Ì²Î¿¼¹«Ê½£º$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$£¬$\widehata=\overline y-\widehatb\overline x$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÇúÏßC£ºy2=4x£¬M£º£¨x-1£©2+y2=4£¨x¡Ý1£©£¬Ö±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬OÎª×ø±êÔ­µã£®
£¨¢ñ£©Èô$\overrightarrow{OA}•\overrightarrow{OB}=-4$£¬ÇóÖ¤£ºÖ±Ïßlºã¹ý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£»
£¨¢ò£©ÈôÖ±ÏßlÓëÇúÏßC1ÏàÇУ¬M£¨1£¬0£©£¬Çó$\overrightarrow{MA}•\overrightarrow{MB}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ö±Ïßy=kx+1ÓëÇúÏßy=x3+ax+bÏàÇÐÓÚµãA£¨1£¬2£©£¬Ôòb-a=5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªº¯Êýf£¨x£©£¨x¡ÊR£©Âú×ãf£¨-x£©=4-f£¨x£©£¬º¯Êý$g£¨x£©=\frac{x-2}{x-1}+\frac{x}{x+1}$£¬ÈôÇúÏßy=f£¨x£©Óëy=g£¨x£©Í¼ÏóµÄ½»µã·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬£¨x3£¬y3£©£¬¡­£¬£¨xm£¬ym£©£¬Ôò$\sum_{i=1}^m{£¨{x_i}+{y_i}£©=}$2m£¨½á¹ûÓú¬ÓÐmµÄʽ×Ó±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¹ýÁ½µãM£¨1£¬2£©£¬N£¨3£¬4£©µÄÖ±ÏßµÄбÂÊΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÉèSnΪµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ£¬ÒÑÖªa1+a6+a11=18£¬ÔòS11µÄֵΪ£¨¡¡¡¡£©
A£®54B£®55C£®66D£®65

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô$\sqrt{3}$ÊÇ3aÓë3bµÄµÈ±ÈÖÐÏÔòabµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®0C£®$\frac{1}{4}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸