12£®Ä³Ñ§Ð£Îªµ÷²é¸ßÈýÄ꼶ѧÉúµÄÉí¸ßÇé¿ö£¬°´Ëæ»ú³éÑùµÄ·½·¨³éÈ¡80ÃûѧÉú£¬µÃµ½ÄÐÉúÉí¸ßÇé¿öµÄƵÂÊ·Ö²¼Ö±·½Í¼£¨Í¼1£©ºÍÅ®ÉúÉí¸ßÇé¿öµÄƵÂÊ·Ö²¼Ö±·½Í¼£¨Í¼2£©£®ÒÑ֪ͼ1ÖÐÉí¸ßÔÚ170¡«175cmµÄÄÐÉúÈËÊýÓÐ16ÈË£®

£¨1£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬Íê³ÉÏÂÁеÄ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÄÜÓжà´ó£¨°Ù·Ö±È£©µÄ°ÑÎÕÈÏΪ¡°Éí¸ßÓëÐÔ±ðÓйء±£¿
¡Ý170cm£¼170cm×ܼÆ
ÄÐÉúÉí¸ß
Å®ÉúÉí¸ß
×ܼÆ
£¨2£©ÔÚÉÏÊö80ÃûѧÉúÖУ¬´ÓÉí¸ßÔÚ170-175cmÖ®¼äµÄѧÉú°´ÄС¢Å®ÐÔ±ð·Ö²ã³éÑùµÄ·½·¨£¬³é³ö5ÈË£¬´ÓÕâ5ÈËÖÐÑ¡ÅÉ3È˵±ÆìÊÖ£¬Çó3ÈËÖÐÇ¡ºÃÓÐÒ»ÃûÅ®ÉúµÄ¸ÅÂÊ£®
²Î¿¼¹«Ê½¼°²Î¿¼Êý¾ÝÈçÏ£º${k^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$
P£¨K2¡Ýk0£©0.0250.6100.0050.001
k05.0244.6357.87910.828

·ÖÎö £¨1£©¼ÆËãÄÐÉú¡¢Å®ÉúÈËÊý£¬Çó³ö2¡Á2ÁÐÁª±íÖжÔÓ¦µÄÊý¾Ý£¬¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨2£©°´·Ö²ã³éÑù·½·¨³é³öÄÐÉú¡¢Å®ÉúÈËÊý£¬ÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËãËùÇóµÄ¸ÅÂÊÖµ£®

½â´ð ½â£º£¨1£©ÄÐÉúÈËÊý£º$\frac{16}{0.08¡Á5}=40$£¬Å®ÉúÈËÊý£º80-40=40£¬
ÄÐÉúÉí¸ß¡Ý170cmµÄÈËÊý=£¨0.08+0.04+0.02+0.01£©¡Á5¡Á40=30£¬
Å®ÉúÉí¸ß¡Ý170cmµÄÈËÊý0.02¡Á5¡Á40=4£¬
ËùÒԿɵõ½ÏÂÁÐ2¡Á2ÁÐÁª±í£º

¡Ý170cm£¼170cm×ܼÆ
ÄÐÉúÉí¸ß301040
Å®ÉúÉí¸ß43640
×ܼÆ344680
----------------£¨2·Ö£©
¼ÆËã¹Û²âÖµ${K^2}=\frac{{80¡Á{{£¨{30¡Á36-10¡Á4}£©}^2}}}{40¡Á40¡Á34¡Á46}¡Ö$34.58£¾10.828£¬----------------£¨5·Ö£©
ËùÒÔÄÜÓÐ99.9%µÄ°ÑÎÕÈÏΪÉí¸ßÓëÐÔ±ðÓйأ»----------------£¨6·Ö£©
£¨2£©ÔÚ170-175cmÖ®¼äµÄѧÉúÄÐÉúÓÐ16ÈË£¬Å®ÉúÈËÊýÓÐ4ÈË£»
°´·Ö²ã³éÑùµÄ·½·¨³é³ö5ÈË£¬ÔòÄÐÉúÕ¼4ÈË£¬Å®ÉúÕ¼1ÈË£»
ÉèÄÐÉúΪA1£¬A2£¬A3£¬A4£¬Å®ÉúΪB£»
´Ó5ÈËÈÎÑ¡3ÃûÓУº£¨A1£¬A2£¬A3£©£¬£¨A1£¬A2£¬A4£©£¬£¨A1£¬A2£¬B£©£¬
£¨A1£¬A3£¬A4£©£¬£¨A1£¬A3£¬B£©£¬£¨A1£¬A4£¬B£©£¬
£¨A2£¬A3£¬A4£©£¬£¨A2£¬A3£¬B£©£¬£¨A2£¬A4£¬B£©£¬
£¨A3£¬A4£¬B£©£¬¹²10ÖÖ¿ÉÄÜ£¬
3ÈËÖÐÇ¡ºÃÓÐÒ»ÃûÅ®ÉúÓУº£¨A1£¬A2£¬B£©£¬£¨A1£¬A3£¬B£©£¬£¨A1£¬A4£¬B£©£¬
£¨A2£¬A3£¬B£©£¬£¨A2£¬A4£¬B£©£¬£¨A3£¬A4£¬B£©¹²6ÖÖ¿ÉÄÜ£¬
¹ÊËùÇó¸ÅÂÊΪP=$\frac{6}{10}=\frac{3}{5}$£®----------------£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéºÍÓÃÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¡÷ABCÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôa£¬b£¬c³ÉµÈ²îÊýÁУ¬ÇÒsinA£¬sinB£¬sinC³ÉµÈ±ÈÊýÁУ¬Ôò½ÇB=$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª$\overrightarrow{a}$=£¨$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬$\overrightarrow{b}$=£¨2cos¦Á£¬2sin¦Á£©£¬$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬Ôò|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒan+1=2Sn£¨n¡ÊN*£©£¬a1=2£¬ÔòÊýÁÐ{an}ͨÏʽan=${a_n}=\left\{{\begin{array}{l}2\\{4¡Á{3^{n-2}}}\end{array}}\right.\begin{array}{l}{n=1}\\{n¡Ý2}\end{array}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ë«ÇúÏß$\frac{{x}^{2}}{m+5}$-$\frac{{y}^{2}}{20-m}$=1µÄ½¹¾àÊÇ£¨¡¡¡¡£©
A£®4B£®6C£®10D£®ÓëmÓйØ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÃüÌâp£ºÓеÄÈý½ÇÐÎÊǵÈÑüÈý½ÇÐΣ¬Ôò£¨¡¡¡¡£©
A£®?p£ºÓеÄÈý½ÇÐβ»ÊǵÈÑüÈý½ÇÐÎ
B£®?p£ºÓеÄÈý½ÇÐÎÊDz»µÈÑüÈý½ÇÐÎ
C£®?p£ºËùÓеÄÈý½ÇÐζ¼²»ÊǵÈÑüÈý½ÇÐÎ
D£®?p£ºËùÓеÄÈý½ÇÐζ¼ÊǵÈÑüÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®²»µÈʽ$\frac{1-x}{x+1}¡Ü0$µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®[-1£¬1]B£®£¨-¡Þ£¬-1]¡È[1£¬+¡Þ£©C£®£¨-1£¬1]D£®£¨-¡Þ£¬-1£©¡È[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®·½³Ìx2+£¨4+i£©x+4+ai=0£¨a¡ÊR£©ÓÐʵ¸ùb£¬ÇÒz=a+bi£¬Ôòz=£¨¡¡¡¡£©
A£®2-2iB£®2+2iC£®-2+2iD£®-2-2i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÒÑÖªÆ½ÃæABEF¡ÍÆ½ÃæABCD£¬ËıßÐÎABEFÊÇÕý·½ÐΣ¬ËıßÐÎABCDÊÇÁâÐΣ¬ÇÒBC=2£¬¡ÏBAD=60¡ã£¬µãG£¬H·Ö±ðΪ±ßCD£¬DAµÄÖе㣬µãMÊÇÏß¶ÎBEÉϵ͝µã£®
£¨¢ñ£©ÇóÖ¤£ºGH¡ÍÆ½ÃæBDM
£¨¢ò£©ÇóÈýÀâ×¶D-MGHµÄÌå»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸