精英家教网 > 高中数学 > 题目详情
2.△ABC内角A,B,C的对边分别为a,b,c,若a,b,c成等差数列,且sinA,sinB,sinC成等比数列,则角B=$\frac{π}{3}$.

分析 由已知及等差数列,等比数列的性质可得2b=a+c,sin2B=sinAsinC,由正弦定理可得b2=ac,整理解得a=c,从而可求a=b=c,进而可求B的值.

解答 解:∵a,b,c成等差数列,且sinA,sinB,sinC成等比数列,
∴2b=a+c,sin2B=sinAsinC,即b2=ac,
∴(a+c)2=4ac,整理可得:(a-c)2=0,解得a=c,
∴b2=ac=a2=c2,可得:a=b=c,
∴B=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题主要考查了等差数列和等比数列在解三角形中的应用.等差中项和等比中项的利用是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知递增数列{an},a1=2,其前n项和为Sn,且满足${a_n}^2+2=3({S_n}+{S_{n-1}})(n≥2)$.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)若数列{bn}满足${log_2}\frac{b_n}{a_n}=n$,求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,圆x2+y2-2y=0的圆心与椭圆C的上顶点重合,点P的纵坐标为$\frac{5}{3}$.
(1)求椭圆C的标准方程;
(2)若斜率为2的直线l与椭圆C交于A,B两点,探究:在椭圆C上是否存在一点Q,使得$\overrightarrow{PA}=\overrightarrow{BQ}$,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=-x2-3x,则f(2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,若sinA:sinB:sinC=3:5:7,则cosC=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足,对于任意的m,n∈N*,都有am+an=am+n-2mn,若a1=1,则a10=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将参加夏令营的100名学生编号为:001,002,…,100,采用系统抽样方法抽取一个容量为20的样本,且随机抽得的号码为003.这100名学生分住在三个营区,从001到015在第 I营区,从016到055住在第 II营区,从056到100在第 III营区,则第 II个营区被抽中的人数应为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知一圆的圆心坐标为C(2,-1),且被直线l:x-y-1=0截得的弦长为2$\sqrt{2}$,则此圆的方程(x-2)2+(y+1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图1)和女生身高情况的频率分布直方图(图2).已知图1中身高在170~175cm的男生人数有16人.

(1)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分比)的把握认为“身高与性别有关”?
≥170cm<170cm总计
男生身高
女生身高
总计
(2)在上述80名学生中,从身高在170-175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式及参考数据如下:${k^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0250.6100.0050.001
k05.0244.6357.87910.828

查看答案和解析>>

同步练习册答案