精英家教网 > 高中数学 > 题目详情
已知直线l的参数方程为:
x=-2+tcosα
y=tsinα
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ.
(Ⅰ)求曲线C的参数方程;
(Ⅱ)当α=
π
4
时,求直线l与曲线C交点的极坐标.
考点:圆的参数方程,简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(Ⅰ)根据极坐标和直角坐标的互化公式求得曲线C的直角坐标方程为 (x+1)2+(y-1)2=2,再利用同角三角函数的基本关系求得曲线C的参数方程.
(Ⅱ)当α=
π
4
时,直线l的方程为
x=-2+
2
2
t
y=
2
2
t
,化成普通方程,并和曲线C的方程联立方程组,求得它们的交点坐标.
解答: 解:(Ⅰ)由ρ=2sinθ-2cosθ,可得ρ2=2ρsinθ-2ρcosθ
∴曲线C的直角坐标方程为x2+y2=2y-2x,
标准方程为:(x+1)2+(y-1)2=2,
曲线C的极坐标方程化为参数方程为
x=-1+
2
cos∅
y=1+
2
sin∅
 (∅为参数) 
(Ⅱ)当a=
π
4
时,直线l的方程为
x=-2+
2
2
t
y=
2
2
t
,化成普通方程为y=x+2.
x2+y2=2y-2x
y=x+2
,解得
x=0
y=2
,或
x=-2
y=0

∴直线l与曲线C交点的极坐标分别为(2,2kπ+
π
2
)、(2,2kπ+π),k∈z.
点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,求两个曲线的交点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的底面是正三角形,点M、N分别是B1C1和A1B1的中点,AA1=AB=BM=2,∠A1AB=60°.
(Ⅰ)求证:BN⊥平面A1B1C1
(Ⅱ)求二面角A1-AB-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2,且点(
2
6
2
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点A,B分别是椭圆C的左右顶点,直线经过点B且垂直于x轴,点P是椭圆C上异于点A,B的任意一点,直线AP交于点M,设直线OM,PB的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,且当x>0时f(x)=x2-2x,若关于x的方程f(x)=a有且仅有2个解,则实数a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若
AB
=
DC
,则A、B、C、D四点是平行四边形的四个顶点;
②已知非零向量
AB
AC
满足(
AB
|
AB
|
+
AC
|AC|
)•
BC
=0,且
AB
|
AB
|
AC
|AC|
=
1
2
,则△ABC为等边三角形;
③已知向量
a
=(-2,1)
b
=(-3,0)
,则
a
b
方向上的投影为2;
④y=sin|x|的周期为π;
⑤若向量
m
n
n
k
,则向量
m
k

其中不正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
x+3y-3≥0
5x-3y-5≤0
x-y+1≥0
,则z=x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足条件
x≥0
y≤-x+3
y≥2x
,则
y
x-2
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=tan(
π
4
x)+log
1
2
(x-
1
2
)-|tan(
π
4
x)-log
1
2
(x-
1
2
)|
在区间(
1
2
,2)
上的图象大致为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
经过点P(1,
2
2
)
,且两焦点与短轴的两个端点的连线构成一正方形.
(1)求椭圆C的方程;
(2)直线l与椭圆C交于A,B两点,若线段AB的垂直平分线经过点(0,-
1
2
)
,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

同步练习册答案