精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-lnx.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调增区间.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:计算题,导数的概念及应用
分析:(1)求导数,并求切点,应用点斜式方程求出切线方程;(2)令f′(x)>0,解不等式,求出单调增区间,注意函数的定义域.
解答: 解:(1)依题意,函数f(x)的定义域为(0,+∞),
f′(x)=2x-
1
x
,f(1)=1,f′(1)=2-1=1,
故曲线y=f(x)在点(1,f(1))处的切线方程为:y-1=x-1即y=x;
(2)依题意,函数f(x)的定义域为(0,+∞),
f′(x)=2x-
1
x

令f′(x)>0,解得,x
2
2
或x<-
2
2

故函数f(x)的单调增区间为(
2
2
,+∞).
点评:本题主要考查导数的几何意义,考查应用导数求切线方程,考查应用导数求单调区间,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,当xy最大时,该几何体的体积为(  )
A、2
7
B、4
7
C、8
7
D、16
7

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-a)ex+(a-1)x+a,a∈R.
(1)当a=1时,求f(x)的单调区间;
(2)设g(x)是f(x)的导函数,证明:当a>2时,在(0,+∞)上恰有一个x0使得g(x0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意a,b,c∈R+,且a2+b2+c2=1,求证:a+b+
2
c≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若
3
a=2bsinA.
(1)求角B的大小;
(2)若△ABC是锐角三角形,且b=
3
,a+c=3,a>c,求a、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

图1给出一个用“当型”循环语句编写的程序:
(1)该程序的算法功能是求式子
 
的值.
(2)用“直到型”循环语句的形式写出该程序,请完成图2程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比大于1的等比数列,Sn为数列{an}的前{an}项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1,n=1,2,…,求数列{bn}的前n项和T.

查看答案和解析>>

科目:高中数学 来源: 题型:

在2014年清明节期间,高速公路车辆较多,某调查公司在服务区从七座以下小型汽车中,按进服务区的先后每间隔50辆就抽取一辆的抽样方法,抽取40名驾驶员进行调查,将他们在某段高速公路上的车速(km/h)分成6段:(60,65),[65,70),[70,75),[80,85),[85,90)后得到如图的频率分布直方图.
(1)该公司在调查取样中,用到的是什么抽样方法?
(2)求这40辆小型车辆车速的众数和中位数的估计值.
(3)若从车速在[60,70)的车辆中任取2辆,求抽出的2辆车中速度在[60,65)和[65,70)中各1辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是A,B,C三内角所对应的边,若a2+c2-b2=ac,则角B=
 

查看答案和解析>>

同步练习册答案