分析 (1)利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式.
(2)利用正弦函数的图象的定义域和值域,求得函数g(x)的最值,利用条件求得a的值.
解答 解:(1)把y=f(x)=sin(2x-$\frac{π}{6}$)-cos(2x+$\frac{π}{3}$)+a=sin(2x-$\frac{π}{6}$)-sin($\frac{π}{6}$-2x)+a=2sin(2x-$\frac{π}{6}$)+a的图象上所有点的横坐标,
伸长到原来的2倍(纵坐标不变),可得y=2sin(x-$\frac{π}{6}$)+a的图象,
把所得图象上所有点向左平行移动$\frac{π}{3}$个单位长度,得到y=g(x)=2sin(x+$\frac{π}{3}$-$\frac{π}{6}$)+a=2sin(x+$\frac{π}{6}$)+a 的图象,
故函数y=g(x)的解析式为 g(x)=2sin(x+$\frac{π}{6}$)+a.
(2)∵在$[0,\frac{π}{2}]$上,x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],sin(x+$\frac{π}{6}$)∈[$\frac{1}{2}$,1],∴g(x)∈[1+a,2+a],
根据g(x)的最大值与最小值之和为5,∴1+a+2+a=5,a=1.
点评 本题主要考查诱导公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | $\frac{{5\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | c<b<a | C. | b<a<c | D. | a<b<c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com