精英家教网 > 高中数学 > 题目详情
4.已知|2x-1|+(y+2)2=0,则(xy)2016=1.

分析 根据指数幂的运算法则计算即可.

解答 解:∵|2x-1|+(y+2)2=0,
∴x=$\frac{1}{2}$,y=-2,
∴xy=-1,
∴(xy)2016=1,
故答案为:1

点评 本题考查了指数幂的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,则输出S=(  )
A.$\frac{5}{11}$B.$\frac{21}{11}$C.$\frac{13}{9}$D.$\frac{17}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=\sqrt{x+1}$的定义域为(  )
A.(5,+∞)B.[-1,5)∪(5,+∞)C.[-1,5)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N等于(  )
A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,平面FBC⊥平面ABCD.△FBC中BC边上的高FH=2,EF=$\frac{3}{2}$.求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.抛掷两次骰子,记第一次得到的点数为m,第二次得到的点数为n.
(1)求m+n不大于4的概率;
(2)求m<n+2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$f(x)=sin({2x-\frac{π}{6}})-cos({2x+\frac{π}{3}})+a$
(1)把y=f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象上所有点向左平行移动$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求函数y=g(x)的解析式;
(2)y=g(x)在$[0,\frac{π}{2}]$上最大值与最小值之和为5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=sinx+cosx的单调递增区间为[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\frac{tanα}{tanα-1}$=-1,求下列各式的值.
(Ⅰ)$\frac{sinα-3cosα}{sinα+2cosα}$l;
(Ⅱ)$\frac{sin(π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{π}{2}+α)}$.

查看答案和解析>>

同步练习册答案