精英家教网 > 高中数学 > 题目详情
14.已知$\frac{tanα}{tanα-1}$=-1,求下列各式的值.
(Ⅰ)$\frac{sinα-3cosα}{sinα+2cosα}$l;
(Ⅱ)$\frac{sin(π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{π}{2}+α)}$.

分析 (Ⅰ)由已知可解得tanα=$\frac{1}{2}$,分子分母同时除以cosα,利用同角三角函数基本关系式化简化简求值得解.
(Ⅱ)利用诱导公式化简后即可得解.

解答 解:由$\frac{tanα}{tanα-1}$=-1,可得:tanα=$\frac{1}{2}$,
(Ⅰ)$\frac{sinα-3cosα}{sinα+2cosα}$=$\frac{tanα-3}{tanα+2}$=$\frac{\frac{1}{2}-3}{\frac{1}{2}+2}$=-1;
(Ⅱ)$\frac{sin(π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{π}{2}+α)}$=$\frac{sinα(-cosα)(-sinα)sinα}{(-cosα)sinαsinαcosα}$=-tanα=-$\frac{1}{2}$.

点评 本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知|2x-1|+(y+2)2=0,则(xy)2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设$a={3^{\frac{1}{3}}},b={(\frac{1}{4})^{3.1}},c={log_{0.4}}3$,则a,b,c的大小关系为(  )
A.c<a<bB.c<b<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={1,2,3},B={2,3},则A∪B=(  )
A.{2}B.{3}C.{2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列有关向量的说法:
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
②若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|;
③若向量$\overrightarrow{a}$=(λ,2λ)与$\overrightarrow{b}$=(3λ,2)的夹角为锐角,则λ<-$\frac{4}{3}$或λ>0;
④若O为△ABC内一点,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则S△AOB:S△AOC:S△BOC=3:2:1.
其中,错误命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=loga(ax+1)+bx(a>0且a≠1,b∈R)的图象关于y轴对称,且满足f(0)=1.
(Ⅰ)求a、b的值;
(Ⅱ)若函数g(x)=f(x)-$\frac{1}{2}$x+c在[0,1]上存在零点,求实数c的取值范围;
(Ⅲ)若函数φ(x)=2f(2x)+x+λ×2x-1(x∈-1,2]),是否存在实数λ使得φ(x)的最小值为-1,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若x0是函数f(x)=-x3-3x+5的零点,则x0所在的一个区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$满足$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,若|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{7}$,则a与b的夹角是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若命题p:α是第一象限角;命题q:α是锐角,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案