精英家教网 > 高中数学 > 题目详情
9.下列有关向量的说法:
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
②若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|;
③若向量$\overrightarrow{a}$=(λ,2λ)与$\overrightarrow{b}$=(3λ,2)的夹角为锐角,则λ<-$\frac{4}{3}$或λ>0;
④若O为△ABC内一点,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则S△AOB:S△AOC:S△BOC=3:2:1.
其中,错误命题的个数为(  )
A.1B.2C.3D.4

分析 由相等向量的概念判断①;由向量在向量方向上投影的概念判断②;注意向量共线同向判断③;由已知条件求出S△AOB、S△AOC、S△BOC的比值判断④.

解答 解:①,若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,但$\overrightarrow{a}$与$\overrightarrow{b}$的方向不同,则$\overrightarrow{a}$≠$\overrightarrow{b}$,故①错误;
②,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为±|$\overrightarrow{a}$|,故②错误;
③,若向量$\overrightarrow{a}$=(λ,2λ)与$\overrightarrow{b}$=(3λ,2)的夹角为锐角,则$\overrightarrow{a}•\overrightarrow{b}>0$,且$\overrightarrow{a}$与$\overrightarrow{b}$不共线,
∴$\left\{\begin{array}{l}{3{λ}^{2}+4λ>0}\\{2λ-6{λ}^{2}≠0}\end{array}\right.$,解得λ∈(-∞,-$\frac{4}{3}$)∪(0,$\frac{1}{3}$)∪($\frac{1}{3}$,+∞),故③错误;
④,若O为△ABC内一点,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则S△AOB:S△AOC:S△BOC=3:2:1,正确.
事实上,如图所示,
延长OB到点E,使得$\overrightarrow{OE}=2\overrightarrow{OB}$,分别以$\overrightarrow{OA}、\overrightarrow{OE}$为邻边作平行四边形OAFE.
则$\overrightarrow{OA}+2\overrightarrow{OB}$=$\overrightarrow{OA}+\overrightarrow{OE}=\overrightarrow{OF}$,
∵$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴-$\overrightarrow{OF}$=3$\overrightarrow{OC}$.
又$\overrightarrow{AF}$=2$\overrightarrow{OB}$,可得$\overrightarrow{DF}=2\overrightarrow{OD}$.
于是$\overrightarrow{CO}=\overrightarrow{OD}$,
∴S△ABC=2S△AOB
同理可得:S△ABC=3S△AOC,S△ABC=6S△BOC
∴AOB,△AOC,△BOC的面积比=3:2:1.
∴正确的命题是1个.
故选:A.

点评 本题考查命题的真假判断与应用,考查了平面向量的应用问题,对于命题④的判断是解答该题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,平面FBC⊥平面ABCD.△FBC中BC边上的高FH=2,EF=$\frac{3}{2}$.求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<5}\\{f(x-1),x≥5}\end{array}\right.$,f(6)的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.以下给出关于向量的四个结论:
①$\overrightarrow a•\overrightarrow b-\overrightarrow b•\overrightarrow a=0$;     
②$(\overrightarrow a+\overrightarrow b)•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$;     
③$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a|•|\overrightarrow b|$;
④若$|\overrightarrow a|≠|\overrightarrow b|$,则$\overrightarrow a≠\overrightarrow b$;
其中正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在四个函数y=sin|2x|,y=|sinx|,y=sin(2x+$\frac{π}{6}$),y=tan(2x-$\frac{π}{4}$)中,最小正周期为π的所有函数个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\frac{tanα}{tanα-1}$=-1,求下列各式的值.
(Ⅰ)$\frac{sinα-3cosα}{sinα+2cosα}$l;
(Ⅱ)$\frac{sin(π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{π}{2}+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=(  )
A.5B.{5}C.D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若一个空间几何体的三视图如图所示,且已知该几何体的体积为$\frac{\sqrt{3}}{6}π$,则其表面积为(  )
A.$\frac{3}{2}π+\sqrt{3}$B.$\frac{3}{2}π$C.$\frac{3}{4}π+2\sqrt{3}$D.$\frac{3}{4}π+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求此多面体的全面积.

查看答案和解析>>

同步练习册答案