精英家教网 > 高中数学 > 题目详情
19.如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求此多面体的全面积.

分析 (Ⅰ)在△BAD中,由余弦定理求得BD=$\sqrt{3}$,可得AB2=AD2+BD2,得AD⊥BD.再由已知可得CD⊥BD,由线面垂直的判定可得BD⊥平面ADG;
(Ⅱ)由已知可得,AG∥EF,AE∥GF,得四边形AEFG为平行四边形,然后求出各面面积得答案.

解答 (Ⅰ)证明:在△BAD中,∵AB=2AD=2,∠BAD=60°,
∴由余弦定理可得BD=$\sqrt{3}$,
则AB2=AD2+BD2,∴AD⊥BD.
在直平行六面体中,GD⊥平面ABCD,BD?平面ABCD,
∴GD⊥BD,
又AD∩GD=D,∴BD⊥平面ADG;
(Ⅱ)由已知可得,AG∥EF,AE∥GF,
∴四边形AEFG为平行四边形,
GD=AD=1,∴EF=AG=$\sqrt{2}$.
EB=AB=2,∴GF=AE=2$\sqrt{2}$.
过G作GH∥DC交CF于H,得FH=2,∴FC=3.
过G作GM∥DB交BE于M,得GM=DB=$\sqrt{3}$,ME=1,∴GE=2.
cos∠GAE=$\frac{8+2-4}{2×2\sqrt{2}×\sqrt{2}}=\frac{3}{4}$,∴sin∠GAE=$\frac{\sqrt{7}}{4}$.
${S}_{AEFG}=2×\frac{1}{2}×\sqrt{2}×2\sqrt{2}×\frac{\sqrt{7}}{4}=\sqrt{7}$.
该几何体的全面积S=$\sqrt{7}+2×\frac{1}{2}×1×\sqrt{3}+\frac{1}{3}×1×1+\frac{1}{2}×2×2$$+\frac{1}{2}×(1+3)×2+\frac{1}{2}×(2+3)×1=\sqrt{7}+\sqrt{3}+9$.

点评 本题考查直线与平面垂直的判定,考查柱、锥、台体表面积的求法,考查空间想象能力和思维能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列有关向量的说法:
①若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
②若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|;
③若向量$\overrightarrow{a}$=(λ,2λ)与$\overrightarrow{b}$=(3λ,2)的夹角为锐角,则λ<-$\frac{4}{3}$或λ>0;
④若O为△ABC内一点,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,则S△AOB:S△AOC:S△BOC=3:2:1.
其中,错误命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知O,F分别为双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的中心和右焦点,点G、M分别在E的渐近线和右支上,若$\overrightarrow{FG}$•$\overrightarrow{OG}$=0,GM∥x轴,|OM|=|OF|,则E的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,四棱锥P-ABCD的侧面PAD是边长为2的正三角形,底面ABCD是∠ABC=60°的菱形,M为PC的中点,PC=$\sqrt{6}$.
(Ⅰ)求证:PC⊥AD;
(Ⅱ)求三棱锥M-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,网格纸上的小正方形边长为1,粗线或虚线表示一个棱柱的三视图,则此棱柱的侧面积为(  )
A.16+4$\sqrt{5}$B.20+4$\sqrt{5}$C.16+8$\sqrt{5}$D.8+12$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若命题p:α是第一象限角;命题q:α是锐角,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若命题“?x∈R,|x-1|+|x+a|<3”是真命题,则实数a的取值范围是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=2ax2-x-1在(0,1)内恰有一个零点,则实数a的取值范围是(  )
A.(-1,1)B.[1,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在数列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$.
(1)求an
(2)若bn=an•an+1,Sn=b1+b2+b3+…+bn,求Sn的范围.

查看答案和解析>>

同步练习册答案