精英家教网 > 高中数学 > 题目详情
20.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),若向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{c}$|的最大值为2+$\sqrt{2}$.

分析 设出向量$\overrightarrow{c}$的坐标,将|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2用坐标表示,得到向量$\overrightarrow{c}$的坐标满足的等式,利用几何意义求其模长的最值.

解答 解:$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),设$\overrightarrow{c}$=(x,y),由向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2,得到(x-1)2+(y-1)2=4,得到|$\overrightarrow{c}$|=$\sqrt{{x}^{2}+{y}^{2}}$的最大值为:2+$\sqrt{2}$;
故答案为:2+$\sqrt{2}$;

点评 本题考查了平面向量的坐标运算,借助于几何意义求模长的最值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知△ABC中的内角A,B,C所对的边分别是a,b,c,若a=2,$C-B=\frac{π}{2}$,则c-b的取值范围是($\sqrt{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2x-e2x(e为自然对数的底数),g(x)=mx+1,(m∈R),若对于任意的x1∈[-1,1],总存在x0∈[-1,1],使得g(x0)=f(x1)成立,则实数m的取值范围为(  )
A.(-∞,1-e2]∪[e2-1,+∞)B.[1-e2,e2-1]
C.(-∞,e-2-1]∪[1-e-2,+∞)D.[e-2-1,1-e-2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.用数学归纳法证明:1+2+3+4+…+(2n+1)>2n2+3n,在验证n=1时不等式成立时,不等式的左边的式子是1+2+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设常数a使方程$\sqrt{3}$sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=$\frac{8π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图的程序框图,输出y的值是(  )
A.127B.63C.31D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx(a≠0)的导函数f′(x)=2x-2,数列{an}的前n项和为Sn,点Pn(n,Sn)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若b1=1,bn+1=bn+an+2(n∈N*),求bn
(3)记cn=$\root{4}{\frac{1}{{b}_{n}}}$(n∈N*),试证c1+c2+…+c2011<89.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C的对边分别为a,b,c,btanB+btanA=-2ctanB,且a=8,△ABC的面积为$4\sqrt{3}$,则b+c的值为$4\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2|x+1|+|2x-a|(x∈R).
(1)当a>-2时,函数f(x)的最小值为4,求实数a的值;
(2)若对于任意,x∈[-1,4],不等式f(x)≥3x恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案