精英家教网 > 高中数学 > 题目详情
8.用数学归纳法证明:1+2+3+4+…+(2n+1)>2n2+3n,在验证n=1时不等式成立时,不等式的左边的式子是1+2+3.

分析 等式左边起始为1的连续的正整数的和,由此易得答案.

解答 解:在等式 1+2+…+(2n+1)=(n+1)(2n+1)中,
当n=1时,左边=1+2+3,
故答案为:1+2+3.

点评 本题考查的知识点是数学归纳法的步骤,在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.解此类问题时,注意n的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.正项数列{an},a1=1,前n项和Sn满足${S_n}•\sqrt{{S_{n-1}}}-{S_{n-1}}•\sqrt{S_n}=2\sqrt{{S_n}•{S_{n-1}}}(n≥2)$,则sn=$\frac{1}{(2n-1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在三棱锥S-ABC中,∠ACB=90°,SA⊥平面ABC,SA=2,AC=BC=1,则异面直线SB与AC所成角的余弦值是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{e_1},\overrightarrow{e_2}$为非零向量且不共线,若$k\overrightarrow{e_1}+\overrightarrow{e_2}$与$\overrightarrow{e_1}+k\overrightarrow{e_2}$共线,求k=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数$y=sinx+\sqrt{3}cosx$的周期,最小值,及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(-$\sqrt{3}$,-1),sin($\frac{π}{2}$-2α)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),若向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{c}$|的最大值为2+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-ax(a∈R).
(1)若曲线y=f(x)存在一条切线与直线y=x平行,求a的取值范围;
(2)当0<a<2时,若f(x)在[a,2]上的最大值为-$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)求函数f(x)=$\frac{{|{3x+2}|-|{1-2x}|}}{{|{x+3}|}}$的最大值M.
(Ⅱ)若实数a,b,c满足a2+b2≤c≤M,证明:2(a+b+c)+1≥0,并说明取等条件.

查看答案和解析>>

同步练习册答案