精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=lnx-ax(a∈R).
(1)若曲线y=f(x)存在一条切线与直线y=x平行,求a的取值范围;
(2)当0<a<2时,若f(x)在[a,2]上的最大值为-$\frac{1}{2}$,求a的值.

分析 (1)求出函数的导数,得到关于a的函数式,根据函数的单调性求出a的范围即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的最大值,得到关于a的方程,解出即可.

解答 解:(1)f′(x)=$\frac{1}{x}$-a,
若曲线y=f(x)存在一条切线与直线y=x平行,
则$\frac{1}{x}$-a=1,即a=$\frac{1}{x}$-1有解,
由x>0,得:a>-1;
(2)f′(x)=$\frac{1}{x}$-a,
令f′(x)>0,解得:0<x<$\frac{1}{a}$,
令f′(x)<0,解得:x>$\frac{1}{a}$,
故f(x)在(0,$\frac{1}{a}$)递增,在($\frac{1}{a}$,+∞)递减,
①2≤$\frac{1}{a}$即0<a≤$\frac{1}{2}$时,
f(x)在[a,2]递增,f(x)max=f(2)=ln2-2a=-$\frac{1}{2}$,
解得:a=$\frac{1}{2}$ln2+$\frac{1}{4}$>$\frac{1}{2}$(舍);
②a<$\frac{1}{a}$<2即$\frac{1}{2}$<a<1时,
f(x)在[a,$\frac{1}{a}$)递增,在($\frac{1}{a}$,2]递减,
故f(x)max=f($\frac{1}{a}$)=ln$\frac{1}{a}$-1=-$\frac{1}{2}$,
解得:a=$\frac{\sqrt{e}}{e}$,
③$\frac{1}{a}$≤a,即1≤a<2时,
f(x)在[a,2]递减,f(x)max=f(a)=lna-a2=-$\frac{1}{2}$,
函数n(a)=lna-a2,a∈[1,2),n′(a)=$\frac{1}{a}$-2a递减,n′(1)=-1<0,
故n(a)在[1,2)递减,n(a)<n(1)=-1<-$\frac{1}{2}$,
故方程lna-a2=-$\frac{1}{2}$无解;
综上a=$\frac{\sqrt{e}}{e}$.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.曲线y=3x5-5x3共有2个极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.用数学归纳法证明:1+2+3+4+…+(2n+1)>2n2+3n,在验证n=1时不等式成立时,不等式的左边的式子是1+2+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图的程序框图,输出y的值是(  )
A.127B.63C.31D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx(a≠0)的导函数f′(x)=2x-2,数列{an}的前n项和为Sn,点Pn(n,Sn)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若b1=1,bn+1=bn+an+2(n∈N*),求bn
(3)记cn=$\root{4}{\frac{1}{{b}_{n}}}$(n∈N*),试证c1+c2+…+c2011<89.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数,又在(-∞,0)内单调递增的为(  )
A.y=x4+2xB.y=2|x|C.y=2x-2-xD.$y={log_{\frac{1}{2}}}|x|-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C的对边分别为a,b,c,btanB+btanA=-2ctanB,且a=8,△ABC的面积为$4\sqrt{3}$,则b+c的值为$4\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}{x^2}$+mx(m>0),数列{an}的前n项和为Sn,点(n,Sn)在f(x)图象上,且f(x)的最小值为-$\frac{1}{8}$.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=$\frac{{{2^{a_n}}}}{{({2^{a_n}}-1)({2^{{a_{n+1}}}}-1)}}$,记数列{bn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?m∈[0,1],x+$\frac{1}{x}≥{2^m}$”的否定形式是(  )
A.$?m∈[{0,1}],x+\frac{1}{x}<{2^m}$B.$?m∈[{0,1}],x+\frac{1}{x}≥{2^m}$C.$?m∈[{0,1}],x+\frac{1}{x}≤{2^m}$D.$?m∈[{0,1}],x+\frac{1}{x}<{2^m}$

查看答案和解析>>

同步练习册答案