分析 (I)使用绝对值三角不等式得出最大值;
(II)利用基本不等式和条件式化简.
解答 解:(Ⅰ)$f(x)=\frac{{|{3x+2}|-|{1-2x}|}}{{|{x+3}|}}$$≤\frac{{|{3x+2+1-2x}|}}{{|{x+3}|}}=1$,
当且仅当(3x+2)(1-2x)≤0即$x≤-\frac{2}{3}$或$x≥\frac{1}{2}$取等号,
∴M=1.
(Ⅱ)证明:2(a+b+c)+1≥2(a+b+a2+b2)+1≥$2({a+b+\frac{{{{(a+b)}^2}}}{2}})+1$=(a+b+1)2≥0,
当且仅当a=b=-$\frac{1}{2}$,c=$\frac{1}{2}$时取等号.
点评 本题考查了绝对值三角不等式,基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{18}{20}$ | C. | $\frac{112}{125}$ | D. | $\frac{17}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?p | B. | q | C. | p∨(?q) | D. | (?p)∨q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $?m∈[{0,1}],x+\frac{1}{x}<{2^m}$ | B. | $?m∈[{0,1}],x+\frac{1}{x}≥{2^m}$ | C. | $?m∈[{0,1}],x+\frac{1}{x}≤{2^m}$ | D. | $?m∈[{0,1}],x+\frac{1}{x}<{2^m}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com