精英家教网 > 高中数学 > 题目详情
10.已知△ABC中的内角A,B,C所对的边分别是a,b,c,若a=2,$C-B=\frac{π}{2}$,则c-b的取值范围是($\sqrt{2}$,2).

分析 用B表示出A,C,根据正弦定理得出b,c,得到c-b关于B的函数,利用B的范围和正弦函数的性质求出c-b的范围.

解答 解:∵C-B=$\frac{π}{2}$,
∴C=B+$\frac{π}{2}$,A=π-B-C=$\frac{π}{2}$-2B,
∴sinA=cos2B,sinC=cosB,
由A=$\frac{π}{2}$-2B得0<B<$\frac{π}{4}$,
由正弦定理得$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,
∴b=$\frac{asinB}{sinA}$=$\frac{2sinB}{cos2B}$,c=$\frac{asinC}{sinA}$=$\frac{2cosB}{cos2B}$,
∴c-b=2($\frac{cosB-sinB}{cos2B}$)=2($\frac{cosB-sinB}{co{s}^{2}B-si{n}^{2}B}$)=$\frac{2}{cosB+sinB}$=$\frac{\sqrt{2}}{sin(B+\frac{π}{4})}$
∵0<B<$\frac{π}{4}$,
∴$\frac{π}{4}$<B+$\frac{π}{4}$<$\frac{π}{2}$,
∴$\frac{\sqrt{2}}{2}$<sin(B+$\frac{π}{4}$)<1,
∴$\sqrt{2}$<$\frac{\sqrt{2}}{sin(B+\frac{π}{4})}$<2,
故答案为:$(\sqrt{2},2)$.

点评 本题考查了正弦定理,三角函数的恒等变换,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若a=6,b=8,c=$2\sqrt{37}$,则△ABC的最大角的度数为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正项等差数列{an}和正项等比数列{bn}满足,a5=b5,则下列关系正确的是(  )
A.a1+a9≥b1+b9B.a1+a9≤b1+b9C.a1+a9>b1+b9D.a1+a9<b1+b9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.正项数列{an},a1=1,前n项和Sn满足${S_n}•\sqrt{{S_{n-1}}}-{S_{n-1}}•\sqrt{S_n}=2\sqrt{{S_n}•{S_{n-1}}}(n≥2)$,则sn=$\frac{1}{(2n-1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=3x2-2x,则f(1)=(  )
A.5B.1C.-1D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a,b∈R,复数$\frac{i-2}{1+2i}=a+bi$,则a2+b2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=({m+\frac{1}{m}})lnx+\frac{1}{x}-x$,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在三棱锥S-ABC中,∠ACB=90°,SA⊥平面ABC,SA=2,AC=BC=1,则异面直线SB与AC所成角的余弦值是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),若向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{c}$|的最大值为2+$\sqrt{2}$.

查看答案和解析>>

同步练习册答案