精英家教网 > 高中数学 > 题目详情

【题目】下列选项中,说法正确的是( )
A.命题“ ”的否定是“
B.命题“ 为真”是命题“ 为真”的充分不必要条件
C.命题“若am2≤bm2 , 则a≤b”是假命题
D.命题“在中 中,若 ,则 ”的逆否命题为真命题

【答案】C
【解析】对应A,命题“ ”的否定是“ ”错误;对于B,当命题“ 为真”, 可能一真一假, 不一定是真命题,当 是真命题时, 都是真命题,此时 为真,故命题“ 为真”是命题“ 为真”的必要不充分条件,错误;对于C,若 ,当 时,a与b的大小关系不确定,假命题;对于D,“在中 中,若 ,则 ,假命题,命题的逆否命题也是假命题,故答案为C.

根据特称命题的否定,充要条件的定义,四种命题的关系,逐一分析四个答案是否成立,最后综合讨论结果,可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有如下性质如果常数那么该函数上是减函数上是增函数

(1)用函数单调性定义来证明上的单调性

(2)已知 求函数的值域

(3)对于(2)中的函数和函数若对任意总存在使得成立求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,函数 (a>0),若存在 ,使得 成立,则实数 的取值范围是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, ,设是线段中点.

(1)求证: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论 为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的 城市和交通拥堵严重的 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):

若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此 列联表,并据此样本分析是否有 的把握认为城市拥堵与认可共享单车有关:

合计

认可

不认可

合计

附:参考数据:(参考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,汉诺塔问题是指有3根杆子ABCB杆上有若干碟子,把所有碟子从B杆移到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面.把B杆上的4个碟子全部移到A杆上,最少需要移动( )次. ( )

A12 B15 C17 D19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=-3x2+a6-ax+6.

1解关于a的不等式f1>0;

2若不等式fx>b的解集为-1,3,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k为常数)恒成立.求k的取值范围.

查看答案和解析>>

同步练习册答案