【题目】已知定义域为R的函数f(x)= 是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k为常数)恒成立.求k的取值范围.
【答案】解:(Ⅰ)f(x)是定义在R的奇函数,所以f(﹣x)=﹣f(x)
令x=0,f(0)=﹣f(0),f(0)=0
令x=1,f(﹣1)=﹣f(1),
所以 ,
解得: ;
(Ⅱ)经检验,当a=2,b=1时,f(x)为奇函数.
所以f(t2﹣2t)<﹣f(2t2﹣k)
因为f(x)是奇函数,所以f(t2﹣2t)<f(k﹣2t2)
因为f(x)在R上单调减,所以t2﹣2t>k﹣2t2
即3t2﹣2t﹣k>0在R上恒成立,所以△=4+43k<0
所以k<﹣ ,即k的取值范围是(﹣∞,﹣ )
【解析】(Ⅰ)利用奇函数定义f(﹣x)=﹣f(x)中的特殊值求a,b的值;(Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.
科目:高中数学 来源: 题型:
【题目】下列选项中,说法正确的是( )
A.命题“ , ”的否定是“ , ”
B.命题“ 为真”是命题“ 为真”的充分不必要条件
C.命题“若am2≤bm2 , 则a≤b”是假命题
D.命题“在中 中,若 ,则 ”的逆否命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,已知点A(1,0,B(-1,0),圆的方程为,点为圆上的动点.
(1)求过点的圆的切线方程.
(2)求的最大值及此时对应的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数,满足.
()求函数的解析式.
()若函数,,是否存在实数使得的最小值为?
若存在,求出的值;若不存在,说明理由.
()若函数,是否存在实数,,使函数在上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答题
(Ⅰ)某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.设甲、乙两个班所抽取的10名同学成绩方差分别为 、 ,比较 、 的大小(直接写结果,不必写过程);
(Ⅱ)设集合 ,B={x|m+x2≤1,m<1},命题p:x∈A;命题q:x∈B,若p是q的必要条件,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com