精英家教网 > 高中数学 > 题目详情

【题目】已知 ,且(1﹣2x)n=a0+a1x+a2x2+a3x3+…+anxn
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3+…+an的值.

【答案】解:(Ⅰ)根据题意,

得:n(n﹣1)(n﹣2)(n﹣3)(n﹣4)=56

即(n﹣5)(n﹣6)=90

解之得:n=15或n=﹣4(舍去).

∴n=15.

(Ⅱ)当n=15时,由已知有(1﹣2x)15=a0+a1x+a2x2+a3x3+…+a15x15

令x=1得:a0+a1+a2+a3+…+a15=﹣1,

令x=0得:a0=1,

∴a1+a2+a3+…+a15=﹣2.


【解析】(Ⅰ)根据题意,将 按排列、组合公式展开化简可得(n﹣5)(n﹣6)=90,解可得:n=15或n=﹣4,又由排列、组合数的定义,可得n的范围,即可得答案;(Ⅱ)由(Ⅰ)中求得n的值,可得(1﹣2x)15=a0+a1x+a2x2+a3x3+…+a15x15,令x=1可得a0+a1+a2+a3+…+a15=﹣1,令令x=0得a0=1,两式相减可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如下图,汉诺塔问题是指有3根杆子ABCB杆上有若干碟子,把所有碟子从B杆移到A杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面.把B杆上的4个碟子全部移到A杆上,最少需要移动( )次. ( )

A12 B15 C17 D19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数f(x)中,满足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是(
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k为常数)恒成立.求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设随机变量X的概率分布列如表,则P(|X﹣3|=1)(

X

1

2

3

4

P

m


A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.

日需求量n

14

15

16

17

18

19

20

  

10

20

16

16

15

13

10

(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,且a2+b2= ,若a+b≤m恒成立,
(Ⅰ)求m的最小值;
(Ⅱ)若2|x﹣1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则

 (  )

A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.
(1)根据所给样本数据画出2×2列联表;
(2)请问能有多大把握认为药物有效?

查看答案和解析>>

同步练习册答案