精英家教网 > 高中数学 > 题目详情

【题目】如图,边长为的等边所在的平面垂直于矩形所在的平面,的中点.

1)证明:

2)求二面角的大小.

【答案】1)能利用已知建立空间直角坐标系,然后表示出点的坐标,进而证明即可。

2

【解析】试题分析:(1)证线线垂直可化为证线与面垂直.即证其中的一条线与另一条线所在的面垂直:AM与面PEM垂直.

2)求二面角的问题,关键要牢牢把握定义,本题中容易EM⊥AMPM⊥AM,利用定义得证,最后放到三角形 中来算.

试题解析:(1)证明:如图所示,取CD的中点E,连接PEEMEA

∵△PCD为正三角形,

∴PE⊥CDPEPDsin∠PDE2sin60°

平面PCD⊥平面ABCD

∴PE⊥平面ABCD,而AM平面ABCD∴PE⊥AM

四边形ABCD是矩形,

∴△ADE△ECM△ABM均为直角三角形,由勾股定理可求得EM

AMAE3∴EM2AM2AE2∴AM⊥EM

PE∩EME∴AM⊥平面PEM∴AM⊥PM

2)解:由(1)可知EM⊥AMPM⊥AM

∴∠PME是二面角PAMD的平面角.

∴tan∠PME1∴∠PME45°二面角PAMD的大小为45°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, ,设是线段中点.

(1)求证: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=-3x2+a6-ax+6.

1解关于a的不等式f1>0;

2若不等式fx>b的解集为-1,3,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若函数F(x)= +ax2 上为减函数,求 的取值范围;
(2)当 时, ,当 时,方程 - =0有两个不等的实根,求实数 的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数f(x)中,满足“x1x2∈(0,+∞)且x1≠x2有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是(
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=lnx+ex
D.f(x)=﹣x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax﹣aln(x﹣1)(a∈R)
(1)当a=1时,求函数f(x)的最值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0(k为常数)恒成立.求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.

日需求量n

14

15

16

17

18

19

20

  

10

20

16

16

15

13

10

(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (m,n∈R)在x=1处取得极值2.
(1)求f(x)的解析式;
(2)k为何值时,方程f(x)﹣k=0只有1个根
(3)设函数g(x)=x2﹣2ax+a,若对于任意x1∈R,总存在x2∈[﹣1,0],使得g(x2)≤f(x1),求a的取值范围.

查看答案和解析>>

同步练习册答案