精英家教网 > 高中数学 > 题目详情
19.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁UM)等于(  )
A.{1,3}B.{1,5}C.{3,5}D.{4,5}

分析 根据补集与交集的定义,求出∁UM与N∩(∁UM)即可.

解答 解:全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},
∴∁UM={2,3,5},
∴则N∩(∁UM)={3,5}.
故选:C.

点评 本题考查了求集合的补集与交集的运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设f(x)=lnx,g(x)=f(x)+f′(x).求g(x)单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将正方形ABCD沿对角线BD折成直二面角A-BC-C,有如下四个结论:
①AC⊥BD;②△ABC是等边三角形;
③AB与CD所成的角90°;④二面角A-BC-D的平面角正切值是$\sqrt{2}$;
其中正确结论是①②④.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C的对边分别为a,b,c.已知$c-acosB=\frac{b}{2}$.
(Ⅰ)求角A的大小;
(Ⅱ)若$b-c=\sqrt{6}$,$a=2\sqrt{3}$,求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是(  )
A.m∥n,m⊥α⇒n⊥αB.α∥β,m?α,n?β⇒m∥n
C.m?α,n?β,m∥n⇒α∥βD.m?α,n?α,m∥β,n∥β⇒α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在四边形ABCD中,设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{BC}=\overrightarrow c$,则$\overrightarrow{DC}$=(  )
A.$\overrightarrow a-\overrightarrow b+\overrightarrow c$B.$\overrightarrow b-(\overrightarrow a+\overrightarrow c)$C.$\overrightarrow a+\overrightarrow b+\overrightarrow c$D.$\overrightarrow b-\overrightarrow a+\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求1734,816,1343的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正数x,y满足x+4y=4,则$\frac{x+28y+4}{xy}$的最小值为(  )
A.$\frac{85}{2}$B.24C.20D.18

查看答案和解析>>

同步练习册答案