精英家教网 > 高中数学 > 题目详情
4.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是(  )
A.m∥n,m⊥α⇒n⊥αB.α∥β,m?α,n?β⇒m∥n
C.m?α,n?β,m∥n⇒α∥βD.m?α,n?α,m∥β,n∥β⇒α∥β

分析 在A中,由线面垂直的判定定理得n⊥α;在B中,m与n相交、平行或异面;在C中,α与β相交或平行;在D中,α与β相交或平行.

解答 解:由m,n为两条不同的直线,α,β为两个不同的平面知:
在A中:由m∥n,m⊥α,由线面垂直的判定定理得n⊥α,故A正确;
在B中:由α∥β,m?α,n?β⇒m与n相交、平行或异面,故B错误;
在C中:m?α,n?β,m∥n⇒α与β相交或平行,故C错误;
在D中:m?α,n?α,m∥β,n∥β⇒α与β相交或平行,故D错误.
故选:A.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在△ABC中,a,b,c分别是角A,B,C的对边,$cosB=\frac{3}{5}$且$\overrightarrow{BA}•\overrightarrow{BC}=21$
(1)求△ABC的面积;
(2)若a=7,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{4-{2}^{-x},x≤0}\\{-lo{g}_{2}x,x>0}\end{array}\right.$,则f(f(8))=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,AB∥CD,∠DCB=90°,AB=AD=AA1=2DC,Q为棱CC1上一动点,过直线AQ的平面分别与棱BB1,DD1交于点P,R,则下列结论错误的是(  )
A.对于任意的点Q,都有AP∥QR
B.对于任意的点Q,四边形APQR不可能为平行四边形
C.存在点Q,使得△ARP为等腰直角三角形
D.存在点Q,使得直线BC∥平面APQR

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁UM)等于(  )
A.{1,3}B.{1,5}C.{3,5}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)为定义在R上的奇函数,当x>0时,f(x)为二次函数,且满足f(2)=1,f(x)在(0,+∞)上的两个零点为1和3.
(1)求函数f(x)在R上的解析式;
(2)若x∈(-∞,m),函数f(x)的图象恒在y=-3的上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,an=2an-1+1(n≥2,n∈N+).
(I)求a2,a3,a4的值;
(2)猜想数列{an}的通项公式,并用数学归纳法来证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“x≠1”是“x2+2x-3≠0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,过点P(1,-2)的直线l的倾斜角为45°.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,直线l和曲线C的交点为点A、B.
(I)求直线l的参数方程;
(Ⅱ)求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案