【题目】在
中,
为直角,
,
,
与
相交于点
,
,
.
(1)试用
、
表示向量
;
(2)在线段
上取一点
,在线段
上取一点
,使得直线
过
,设
,
,求
的值;
(3)若
,过
作线段
,使得
为
的中点,且
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数).
(1)求
的单调区间;
(2)是否存在正实数
使得
,若存在求出
,否则说明理由;
(3)若存在不等实数
,
,使得
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然对数的底数,e≈2.718…).
(1)求函数f(x)的极值;
(2)若函数y=f(x)g(x)在区间[1,2]上单调递增,求实数a的取值范围;
(3)若函数h(x)=
在区间(0,+∞)上既存在极大值又存在极小值,并且函数h(x)的极大值小于整数b,求b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是坐标原点,过
的直线分别交抛物线
于
、
两点,直线
与过点
平行于
轴的直线相交于点
,过点
与此抛物线相切的直线与直线
相交于点
.则
( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=
,n=
,现有如下命题:
①对于任意不相等的实数x1,x2,都有m>0;
②对于任意的a及任意不相等的实数x1,x2,都有n>0;
③对于任意的a,存在不相等的实数x1,x2,使得m=n;
④对于任意的a,存在不相等的实数x1,x2,使得m=-n.
其中真命题有___________________(写出所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
.
(1)当
时,求函数
图象在
处的切线方程;
(2)若对任意
,不等式
恒成立,求
的取值范围;
(3)若
存在极大值和极小值,且极大值小于极小值,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当a=1时,求函数
在(2,
)处的切线方程:
(2)当a=2时,求函数
的单调区间和极值;
(3)若
在
上是单调增函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地的出租车价格规定:起步费
元,可行
公里,
公里以后按每公里
元计算,可再行
公里;超过
公里按每公里
元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定。
(1)若小明乘出租车从学校到家,共
公里,请问他应付出租车费多少元?
(2)求车费
(元)与行车里程
(公里)之间的函数关系式
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com