| A. | [-4,2] | B. | [-2,4] | C. | [-2,2] | D. | [-4,4] |
分析 由基本不等式可得x+$\frac{4}{x-1}$的最小值,再由恒成立可得m和a的不等式,构造函数h(a)=-2ma+m2-8,a∈[-1,1],由一次函数和恒成立可得m的不等式组,解不等式组可得.
解答 解:∵x∈[2,4],∴x-1∈[1,3],
∴x+$\frac{4}{x-1}$=x-1+$\frac{4}{x-1}$+1≥2$\sqrt{(x-1)•\frac{4}{x-1}}$+1=5,
当且仅当x-1=$\frac{4}{x-1}$即x=3时,上式取最小值5,
∴5≥m2-2am-3对a∈[-1,1]恒成立,
即m2-2am-8≤0对a∈[-1,1]恒成立,
构造函数h(a)=-2ma+m2-8,a∈[-1,1],
由恒成立可得$\left\{\begin{array}{l}{h(-1)=2m+{m}^{2}-8≤0}\\{h(1)=-2m+{m}^{2}-8≤0}\end{array}\right.$,
解关于m的不等式可得-2≤m≤2,
故选:C.
点评 本题考查基本不等式求最值以及恒成立问题,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=-$\frac{π}{12}$ | B. | x=0 | C. | x=$\frac{π}{6}$ | D. | x=$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com