【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:
),经统计,其高度均在区间
内,将其按
分成6组,制成如图所示的频率分布直方图.其中高度为
及以上的树苗为优质树苗.
![]()
|
| 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
(1)求图中
的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于
,
两个试验区,部分数据如上列联表:将列联表补充完整,并判断是否有
的把握认为优质树苗与
,
两个试验区有关系,并说明理由.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中
.
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线C:y2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为( )
A. 4B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
、
,把和
叫做数列
与
的前
项泛和,记作为
.已知数列
的前
项和为
,且
.
(1)求数列
的通项公式;
(2)数列
与数列
的前
项的泛和为
,且
恒成立,求实数
的取值范围;
(3)从数列
的前
项中,任取
项从小到大依次排列,得到数列
、
、
、
;再将余下的
项从大到小依次排列,得到数列
、
、
、
.求数列
与数列
的前
项的泛和![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,
是以
为斜边的等腰直角三角形,
是等边三角形,
,如图②,将
沿
折起使平面
平面
分别为
的中点,点
在棱
上,且
,点
在棱
上,且
.
![]()
(1)在棱
上是否存在一点
,使平面
平面
?若存在,求
的值;若不存在,请说明理由.
(2)求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,E为D1D的中点,AC与BD的交点为O.
![]()
(1)求证:EO⊥平面AB1C;
(2)在由正方体的顶点确定的平面中,是否存在与平面AB1C平行的平面?证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,有下列四个命题:
①函数
是奇函数;
②函数
在
是单调函数;
③当
时,函数
恒成立;
④当
时,函数
有一个零点,
其中正确的是____________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com