【题目】如图①,
是以
为斜边的等腰直角三角形,
是等边三角形,
,如图②,将
沿
折起使平面
平面
分别为
的中点,点
在棱
上,且
,点
在棱
上,且
.
![]()
(1)在棱
上是否存在一点
,使平面
平面
?若存在,求
的值;若不存在,请说明理由.
(2)求点
到平面
的距离.
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
如图,已知抛物线
,过点
任作一直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
(
为坐标原点).
![]()
(1)证明:动点
在定直线上;
(2)作
的任意一条切线
(不含
轴)与直线
相交于点
,与(1)中的定直线相交于点
,证明:
为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为抛物线
的焦点,过
的动直线交抛物线
于
,
两点.当直线与
轴垂直时,
.
(1)求抛物线
的方程;
(2)设直线
的斜率为1且与抛物线的准线
相交于点
,抛物线
上存在点
使得直线
,
,
的斜率成等差数列,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:
),经统计,其高度均在区间
内,将其按
分成6组,制成如图所示的频率分布直方图.其中高度为
及以上的树苗为优质树苗.
![]()
|
| 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
(1)求图中
的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于
,
两个试验区,部分数据如上列联表:将列联表补充完整,并判断是否有
的把握认为优质树苗与
,
两个试验区有关系,并说明理由.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图像向左平移
个单位,再将所有点的横坐标缩短到原来的
倍,纵坐标不变,得到函数
的图像则下面对函数
的叙述不正确的是( )
A.函数
的周期![]()
B.函数
的一个对称中心![]()
C.函数
在区间
内单调递增
D.当
,
时,函数
有最小值![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某客户考察了一款热销的净水器,使用寿命为十年,过滤由核心部件滤芯来实现.在使用过程中,滤芯需要不定期更换,其中滤芯每个200元.如图是根据100台该款净水器在十年使用期内更换的滤芯的件数制成的柱状图.(以100台净水器更换滤芯的频率代替1台净水器更换滤芯发生的概率)
![]()
(1)估计一台净水器在使用期内更换滤芯的件数的众数和中位数.
(2)估计一台净水器在使用期内更换滤芯的件数大于10的概率.
(3)已知上述100台净水器在购机的同时购买滤芯享受5折优惠(使用过程中如需再购买无优惠),假设每台净水器在购机的同时购买滤芯10个,这100台净水器在使用期内,更换滤芯的件数记为a,所需费用记为y,补全下表,估计这100台净水器在使用期内购买滤芯所需总费用的平均数.
100台该款净水器在试用期内更换滤芯的件数a | 9 | 10 | 11 | 12 |
频数 | ||||
费用y |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全球关注的抗击“新冠肺炎”中,某跨国科研中心的一个团队,研制了甲、乙两种治疗“新冠肺炎”新药,希望知道哪种新药更有效,为此进行动物试验,试验方案如下:
第一种:选取
共10只患病白鼠,服用甲药后某项指标分别为:
;
第二种:选取
共10只患病白鼠,服用乙药后某项指标分别为:
;
该团队判定患病白鼠服药后这项指标不低于85的确认为药物有效,否则确认为药物无效.
(1)已知第一种试验方案的10个数据的平均数为89,求这组数据的方差;
(2)现需要从已服用乙药的10只白鼠中随机抽取7只,记其中服药有效的只数为
,求
的分布列与期望;
(3)该团队的另一实验室有1000只白鼠,其中900只为正常白鼠,100只为患病白鼠,每用新研制的甲药给所有患病白鼠服用一次,患病白鼠中有
变为正常白鼠,但正常白鼠仍有
变为患病白鼠,假设实验室的所有白鼠都活着且数量不变,且记服用
次甲药后此实验室正常白鼠的只数为
.
(i)求
并写出
与
的关系式;
(ii)要使服用甲药两次后,该实验室正常白鼠至少有950只,求最大的正整数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某面包推出一款新面包,每个面包的成本价为4元,售价为10元,该款面包当天只出一炉(一炉至少15个,至多30个),当天如果没有售完,剩余的面包以每个2元的价格处理掉,为了确定这一炉面包的个数,该店记录了这款新面包最近30天的日需求量(单位:个),整理得下表:
![]()
(1)根据表中数据可知,频数
与日需求量
(单位:个)线性相关,求
关于
的线性回归方程;
(2)以30天记录的各日需求量的频率代替各日需求量的概率,若该店这款新面包出炉的个数为24,记当日这款新面包获得的总利润为
(单位:元).
(ⅰ)若日需求量为15个,求
;
(ⅱ)求
的分布列及其数学期望.
相关公式:
, ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com