【题目】已知
为抛物线
的焦点,过
的动直线交抛物线
于
,
两点.当直线与
轴垂直时,
.
(1)求抛物线
的方程;
(2)设直线
的斜率为1且与抛物线的准线
相交于点
,抛物线
上存在点
使得直线
,
,
的斜率成等差数列,求点
的坐标.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,上顶点为A,过
的直线
与y轴交于点M,满足
(O为坐标原点),且直线l与直线
之间的距离为
.
(1)求椭圆C的方程;
(2)在直线
上是否存在点P,满足
?存在,指出有几个这样的点(不必求出点的坐标);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过椭圆
的四个顶点与坐标轴垂直的四条直线围成的矩形
(
是第一象限内的点)的面积为
,且过椭圆
的右焦点
的倾斜角为
的直线过点
.
(1)求椭圆
的标准方程
(2)若射线
与椭圆
的交点分别为
.当它们的斜率之积为
时,试问
的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
、
,把和
叫做数列
与
的前
项泛和,记作为
.已知数列
的前
项和为
,且
.
(1)求数列
的通项公式;
(2)数列
与数列
的前
项的泛和为
,且
恒成立,求实数
的取值范围;
(3)从数列
的前
项中,任取
项从小到大依次排列,得到数列
、
、
、
;再将余下的
项从大到小依次排列,得到数列
、
、
、
.求数列
与数列
的前
项的泛和![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,
是以
为斜边的等腰直角三角形,
是等边三角形,
,如图②,将
沿
折起使平面
平面
分别为
的中点,点
在棱
上,且
,点
在棱
上,且
.
![]()
(1)在棱
上是否存在一点
,使平面
平面
?若存在,求
的值;若不存在,请说明理由.
(2)求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车的投放,方便了市民短途出行,被誉为中国“新四大发明”之一.某市为研究单车用户与年龄的相关程度,随机调查了100位成人市民,统计数据如下:
不小于40岁 | 小于40岁 | 合计 | |
单车用户 | 12 | 18 | 30 |
非单车用户 | 38 | 32 | 70 |
合计 | 50 | 50 | 100 |
(1)从独立性检验角度分析,能否有
以上的把握认为该市成人市民是否为单车用户与年龄是否小于40岁有关;
(2)将此样本的频率做为概率,从该市单车用户中随机抽取3人,记不小于40岁的单车用户的人数为
,求
的分布列与数学期望.
下面临界值表供参考:
P( | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com