精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的极值;

2)若,且当为自然对数的底数)时,恒成立,求实数的取值范围.

【答案】1)见解析;(2.

【解析】

根据题意,求函数的定义域和导数,在定义域范围内判断函数的单调性求出极值即可;

根据题意,求出函数的表达式,利用导数判断函数上的单调性,求出函数的最大值,由题意知,,解不等式即可.

由题意知,定义域为

因为函数

所以

所以当时,1

因为当时,

时,

所以函数上单调递增,在上单调递减,

∴当时,有极大值为

时,有极小值为.

因为函数

所以

时,恒成立等价于

时,

因为

,又

所以当时,,

时,,

所以函数上单调递增,在上单调递减,

因为

,所以

所以,即

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,若上为增函数,则称一阶比增函数;若上为增函数,则称二阶比增函数”.我们把所有一阶比增函数组成的集合记为,所有二阶比增函数组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,











求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足,且.

1)求的解析式;

2)设函数,当时,求的最小值;

3)设函数,若对任意,总存在,使得成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体中,.

1)证明:.

2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,过的动直线交抛物线两点.当直线与轴垂直时,

1)求抛物线的方程;

2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线的斜率成等差数列,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:

月份

1

2

3

4

5

销量(百台)

0.6

0.8

1.2

1.6

1.8

(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;

(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:

有购买意愿对应的月份

7

8

9

10

11

12

频数

60

80

120

130

80

30

现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.

参考公式与数据:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图像向左平移个单位,再将所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数的图像则下面对函数的叙述不正确的是(

A.函数的周期

B.函数的一个对称中心

C.函数在区间内单调递增

D.时,函数有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面

的中点,.

(1)求证:平面

(2)求证:平面平面

(3)求此多面体的体积.

查看答案和解析>>

同步练习册答案