【题目】已知函数
.
(1)求
的极值;
(2)若
,且当
(
为自然对数的底数)时,
恒成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”;若
在
上为增函数,则称
为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为
,所有“二阶比增函数”组成的集合记为
.
(Ⅰ)已知函数
,若
且
,求实数
的取值范围;
(Ⅱ)已知
,
且
的部分函数值由下表给出,
|
|
|
|
|
|
|
|
|
|
求证:
;
(Ⅲ)定义集合![]()
请问:是否存在常数
,使得
,
,有
成立?若存在,求出
的最小值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
是参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
交于
,
两点,与曲线
交于
,
两点,求
取最大值时
的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为抛物线
的焦点,过
的动直线交抛物线
于
,
两点.当直线与
轴垂直时,
.
(1)求抛物线
的方程;
(2)设直线
的斜率为1且与抛物线的准线
相交于点
,抛物线
上存在点
使得直线
,
,
的斜率成等差数列,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量 | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量
(百件)与月份
之间的相关关系.请用最小二乘法求
关于
的线性回归方程
,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图像向左平移
个单位,再将所有点的横坐标缩短到原来的
倍,纵坐标不变,得到函数
的图像则下面对函数
的叙述不正确的是( )
A.函数
的周期![]()
B.函数
的一个对称中心![]()
C.函数
在区间
内单调递增
D.当
,
时,函数
有最小值![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com