【题目】已知数列的前项和为,且,设,数列满足.
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若对一切正整数恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD,底面ABCD是边长为2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分别是BC,PC的中点。
(1)求证:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】未知数的个数多余方程个数的方程(组)叫做不定方程,最早提出不定方程的是我国的《九章算术》.实际生活中有很多不定方程的例子,例如“百鸡问题”:公元五世纪末,我国古代数学家张丘建在《算经》中提出了“百鸡问题”:“鸡母一,值钱三;鸡翁一,值钱二;鸡雏二,值钱一.百钱买百鸡,问鸡翁、母、雏各几何?”
算法设计:
(1)设母鸡、公鸡、小鸡数分别为、、,则应满足如下条件:
;.
(2)先分析一下三个变量的可能值.①的最小值可能为零,若全部钱用来买母鸡,最多只能买33只,
故的值为中的整数.②的最小值为零,最大值为50.③的最小值为零,最大值为100.
(3)对、、三个未知数来说,取值范围最少.为提高程序的效率,先考虑对的值进行一一列举.
(4)在固定一个的值的前提下,再对值进行一一列举.
(5)对于每个,,怎样去寻找满足百年买百鸡条件的.由于,值已设定,便可由下式得到:.
(6)这时的,,是一组可能解,它只满足“百鸡”条件,还未满足“百钱”.是否真实解,还要看它们是否满足,满足即为所求解.
根据上述算法思想,画出流程图并用伪代码表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从到在第一营区,从到在第二营区,从到在第三营区,则第一、第二、第三营区被抽中的人数分别为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,,其前项和满足,其中.
(1)设,证明:数列是等差数列;
(2)设,为数列的前项和,求证:;
(3)设(为非零整数,),试确定的值,使得对任意,都有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆相交于两点.
(1)若椭圆的离心率为,焦距为,求线段的长;
(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知动直线过点,且与圆交于、两点.
(1)若直线的斜率为,求的面积;
(2)若直线的斜率为,点是圆上任意一点,求的取值范围;
(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com