精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,且,设,数列满足.

(1)求数列的通项公式;

(2)求数列的前项和

(3)若对一切正整数恒成立,求实数的取值范围.

【答案】(1)bn=3n+1 (2) (3) m1m5.

【解析】试题分析:

(1)由递推关系可得数列是等比数列,据此可得通项公式,然后计算的通项公式即可;

(2)由题意错位相减可得前n项和为

(3)首先确定数列单调递减,然后得到关于实数m的不等式,求解不等式可得实数的取值范围为m1m5.

试题解析:

(1),数列{an}是公比为的等比数列,

,

所以,

(2)(1),

.

,①

,

②两式相减得

所以

(3)因为

所以

则数列{cn}单调递减,

∴当n=1,cn取最大值是,

结合题意可得:

m2+4m50

解得:m1或m5.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD,底面ABCD是边长为2的蓌形,PA平面ABCD,PA=2,ABC=60°,E,F分别是BC,PC的中点。

1)求证:AEPD;

2)求二面角E-AF-C的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】未知数的个数多余方程个数的方程(组)叫做不定方程,最早提出不定方程的是我国的《九章算术》.实际生活中有很多不定方程的例子,例如百鸡问题:公元五世纪末,我国古代数学家张丘建在《算经》中提出了百鸡问题鸡母一,值钱三;鸡翁一,值钱二;鸡雏二,值钱一.百钱买百鸡,问鸡翁、母、雏各几何?

算法设计:

(1)设母鸡、公鸡、小鸡数分别为则应满足如下条件

(2)先分析一下三个变量的可能值.的最小值可能为零若全部钱用来买母鸡最多只能买33只,

的值为中的整数的最小值为零最大值为50.的最小值为零最大值为100.

(3)对三个未知数来说取值范围最少为提高程序的效率先考虑对的值进行一一列举

(4)在固定一个的值的前提下再对值进行一一列举

(5)对于每个怎样去寻找满足百年买百鸡条件的.由于值已设定,便可由下式得到:

(6)这时的是一组可能解它只满足百鸡条件,还未满足百钱.是否真实解,还要看它们是否满足满足即为所求解

根据上述算法思想,画出流程图并用伪代码表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从在第一营区,从在第二营区,从在第三营区,则第一、第二、第三营区被抽中的人数分别为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男3020),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

1)能否据此判断有975%的把握认为视觉和空间能力与性别有关?

2)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望EX).

附表及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列其前项和满足其中

(1)设证明数列是等数列

(2)设为数列的前项和求证

(3)设为非零整数),试确定的值使得对任意都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,的中点.

求证:

求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆相交于两点.

(1)若椭圆的离心率为,焦距为,求线段的长;

(2)若向量与向量互相垂直其中为坐标原点,当椭圆的离心率时,求椭圆长轴长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知动直线过点,且与圆交于两点.

(1)若直线的斜率为,求的面积;

(2)若直线的斜率为,点是圆上任意一点,求的取值范围;

(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案