精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,的中点.

求证:

求二面角的余弦值;

【答案】1证明见解析2.

【解析】

试题分析:1连接,交于点,连接,根据直四棱柱的性质,得到,利用线面平行的判定定理,即可证得2是直棱柱,且,故两两垂直,建立空间直角坐标系,求解平面和平面的法向量,求解两个向量所成的角,即可求解二面角的余弦值.

试题解析:证明:连接,交于点,连接.

是直三棱柱得四边形为矩形,的中点.

中点,所以中位线,所以

所以,所以.

是直棱柱,且,故两两垂直.

如图建立空间直角坐标系.

,则.

所以.

设平面的法向量为,则有 所以

,得.

易知平面法向量为.

由二面角平面角是锐角,得.

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足,且

(Ⅰ)求证:数列是等比数列;

(Ⅱ)设是数列的前项和,若对任意的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组,在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本,试确定:

(1)游泳组中,青年人、中年人、老年人分别所占的比例;

(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且,设,数列满足.

(1)求数列的通项公式;

(2)求数列的前项和

(3)若对一切正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数上的最大值的表达式;

(2)当时,讨论函数上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域,部分对应值如表, 的导函数的图象如图所示,下列关于函数的命题;

函数的值域为

函数上是减函数;

如果当时, 最大值是,那么的最大值为

时,函数最多有4个零点.

其中正确命题的序号是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论的单调性;

时,设,若存在,使,求实数的取值范围.(为自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cos C=.

()求ABC的周长; ()求cos A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.

(1)求频率分布直方图中的值;

(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;

(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

同步练习册答案