精英家教网 > 高中数学 > 题目详情
计算:log3
27
+lg25+lg4.
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的运算性质即可得出.
解答: 解:原式=log33
3
2
+lg(25×4)
=
3
2
+2

=
7
2
点评:本题考查了对数的运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要得到函数y=sin(2x+
π
3
)的图象,只需将函数y=sin2x的图象(  )
A、向左平移
π
3
个单位
B、向左平移
π
6
个单位
C、向右平移
π
3
个单位
D、向右平移
π
6
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABC的内角A、B、C的对边分别为a、b、c,且acosC,bcosB,cosA成等差数列.
(1)求角B的大小;
(2)若b=2,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=2点p(2,-1),求过P点的圆的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R,则“ab>0,且a>b”是“
1
a
1
b
”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-4x,x≥0
-x2-4x,x<0

(1)画出f(x)>x的图象,根据图象直接写出f(x)>x的解集(用区间表示);
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(x+
π
4
)=
3
5
17π
12
<x<
4
,求
sin2x-2cos2x+2
1-tanx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为正数,记L(a,b)=
a-b
lna-lnb
,a≠b
a,a=b
为“正数a,b的对数平均数”.
(1)求函数f(x)=L(x,1),x∈(1,+∞)的单调区间;
(2)a≥b>0,比较a,b的“算术平均数”,“几何平均数”和“对数平均数”的大小关系.

查看答案和解析>>

同步练习册答案