精英家教网 > 高中数学 > 题目详情
3.复平面内,|z+1|=2 表示的图形的面积是4π.

分析 直接由|z+1|=2 的几何意义,即复平面内动点到(-1,0)的距离为2的轨迹结合圆的面积求解.

解答 解:|z+1|=2 的几何意义为复平面内动点到(-1,0)的距离为2的轨迹,
如图:

其面积为π×22=4π.
故答案为:4π.

点评 本题考查复数的代数表示法及其几何意义,考查数形结合的解题思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在(1+x)n的展开式中,若第三项和第七项的系数相等,则n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),则cos(π-α)等于(  )
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{1}{9}$C.$\frac{1}{9}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义域在R上的函数f(x)满足f(x+1)+f(1-x)=2,当x>1时,f(x)=$\frac{1}{x-1}$,则关于x的方程f(x)+2a=0没有负实根时实数a的取值范围是(  )
A.(-∞,-1]∪[$-\frac{1}{2}$,+∞)B.(0,1)C.(-1,$-\frac{1}{2}$,)∪($-\frac{1}{2}$,+∞)D.(-2,$-\frac{1}{2}$)∪($-\frac{1}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设直线l:3x+4y+a=0,圆C:(x-2)2+y2=22,若在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,则a的取值范围是[-16,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知各项均不为零的数列{an},定义向量$\overrightarrow{c_n}=({{a_n},{a_{n+1}}}),\overrightarrow{b_n}=({2n+2,-2n}),n∈{N^*}$.下列命题中真命题是(  )
A.若?n∈N*总有cn⊥bn成立,则数列{an}是等比数列
B.若?n∈N*总有cn∥bn成立成立,则数列{an}是等比数列
C.若?n∈N*总有cn⊥bn成立,则数列{an}是等差数列
D.若?n∈N*总有cn∥bn成立,则数列{an}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数${z_1}={m^2}-2m+({2{m^2}-9m})i$,z2=-m+i为虚数单位,(m∈R)
(1)当复数z1为纯虚数时,求m的取值
(2)当实数m∈[1,2]时,复数z=z1z2,求复数z的实部最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=-x3+3x2+a.
(1)求f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-x+xlnx
(1)求函数f(x)的单调区间;
(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案