【题目】中,角A,B,C的对边分别是且满足
求角B的大小;
(2)若的面积为为且,求的值;
【答案】(1). ⑵a+c=.
【解析】
试题分析:(1)又A+B+C=π,即C+B=π-A,
∴sin(C+B)=sin(π-A)=sinA,
将(2a-c)cosB=bcosC,利用正弦定理化简得:(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(C+B)=sinA,
在△ABC中,0<A<π,sinA>0,
∴cosB=,又0<B<π,则;
(2)∵△ABC的面积为,sinB=sin=,
∴S=acsinB=ac=,
∴ac=3,又b=,cosB=cos=,
∴由余弦定理b2=a2+c2-2accosB得:a2+c2-ac=(a+c)2-3ac=(a+c)2-9=3,
∴(a+c)2=12,
则a+c=.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,且过点
求椭圆的标准方程;
设直线l:与椭圆在第一象限的交点为M,过点F且斜率为的直线与l交于点N,若与的面积之比为3:为坐标原点,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是菱形, ,平面平面
在棱上运动.
(1)当在何处时, 平面;
(2)已知为的中点, 与交于点,当平面时,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知椭圆:的左、右顶点分别为A,B,其离心率,点为椭圆上的一个动点,面积的最大值是.
(1)求椭圆的方程;
(2)若过椭圆右顶点的直线与椭圆的另一个交点为,线段的垂直平分线与轴交于点,当时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为
A. 15名志愿者身高的极差小于臂展的极差
B. 15名志愿者身高和臂展成正相关关系,
C. 可估计身高为190厘米的人臂展大约为189.65厘米,
D. 身高相差10厘米的两人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线,曲线为参数), 以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)若射线分别交于两点, 求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有关于的一元二次方程.
(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.
(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com