精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线,曲线为参数), 以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)若射线分别交两点, 求的最大值.

【答案】1;(2.

【解析】试题分析:(1)根据转化即可;(2)首先设出点的极坐标,然后利用参数的几何意义求解即可.

试题解析:(1C1ρ(cosθsinθ)4

C2的普通方程为(x1)2y21,所以ρ2cosθ…4

2)设A(ρ1α)B(ρ2α),-<α<,

ρ1=,ρ22cosα…6

==×2cosα(cosαsinα)

(cos2αsin2α1)[cos(2α)1]…8

α=时,取得最大值(1)…10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线和直线交于点.以为起点,再从曲线上任取两个点分别为终点得到两个向量,记这两个向量的数量积为.若去九寨沟;若去泰山;若去长白山; 去武夷山.

(1)若从这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和去泰山的概率;

(2)按上述方案,小明在曲线上取点作为向量的终点,则小明决定去武夷山.点在曲线上运动,若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是为参数).

1)求曲线的直角坐标方程和直线的的普通方程;

2)设点,若直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,上恒成立,求实数的取值范围;

(2)当时,若函数上恰有两个不同的零点,求实数的取值范围;

(3)是否存在常数,使函数和函数在公共定义域上具有相同的单调性?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在分数在以上(含的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本得到成绩的频率分布直方图(见下图).

(1)的值,并计算所抽取样本的平均值同一组中的数据用该组区间的中点值作代表);

(2)填写下面的列联表,能否有超过的把握认为获奖与学生的文理科有关

文科生

理科生

合计

获奖

不获奖

合计

附表及公式:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点在椭圆上.

(1)求椭圆的方程;

(2)设过点且不与坐标轴垂直的直线交椭圆两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;

(3)在第(2)问的条件下,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.

I)求乙得分的分布列和数学期望;

II)求甲、乙两人中至少有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的方程为=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )

A.必在圆x2+y2=2内

B.必在圆x2+y2=2外

C.必在圆x2+y2=1外

D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间

查看答案和解析>>

同步练习册答案