【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线,曲线为参数), 以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)若射线分别交于两点, 求的最大值.
科目:高中数学 来源: 题型:
【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线和直线交于点.以为起点,再从曲线上任取两个点分别为终点得到两个向量,记这两个向量的数量积为.若去九寨沟;若去泰山;若去长白山; 去武夷山.
(1)若从这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和不去泰山的概率;
(2)按上述方案,小明在曲线上取点作为向量的终点,则小明决定去武夷山.点在曲线上运动,若点的坐标为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(1)求曲线的直角坐标方程和直线的的普通方程;
(2)设点,若直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,在上恒成立,求实数的取值范围;
(2)当时,若函数在上恰有两个不同的零点,求实数的取值范围;
(3)是否存在常数,使函数和函数在公共定义域上具有相同的单调性?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.
(1)求的值;
(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在,分数在以上(含)的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图(见下图).
(1)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);
(2)填写下面的列联表,能否有超过的把握认为“获奖与学生的文理科有关”?
文科生 | 理科生 | 合计 | |
获奖 | |||
不获奖 | |||
合计 |
附表及公式:
,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,离心率,点在椭圆上.
(1)求椭圆的方程;
(2)设过点且不与坐标轴垂直的直线交椭圆于、两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围;
(3)在第(2)问的条件下,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.
(I)求乙得分的分布列和数学期望;
(II)求甲、乙两人中至少有一人入选的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的方程为+=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=1外
D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com