精英家教网 > 高中数学 > 题目详情
已知点F(1,0),直线l:x=-1,动点P到点F的距离等于点P到直线l的距离,动直线PO与直线l交于动点N,过N且平行于x轴的直线与动直线PF交于动点Q.
(Ⅰ)求证:动点P、Q在同一条曲线C上运动;
(Ⅱ)曲线C在点P处的切线与直线l交于点R,M为线段PQ的中点.
(1)求证:直线RMx轴;
(2)若直线RM平分∠PRF,求直线PQ的方程.
(I)点P在曲线C:y2=4x上
令P(
y21
4
y1),OP:y=
4
y1
x,N(-1,-
4
y1
)

Q(
4
y12
,-
4
y1
)

NQ:y=-
4
y1
,PF:y=
4y1
y12-4
(x-1)

将直线NQ的方程代入直线PF的方程消去y1,得y2=4x
∴点Q在曲线C上.
(II)
(1)∵y=2
x
y=
1
x
kPR=
2
y1

PR:y-y1=
2
y1
(x-
y21
4
)

R:(-1,
y1
2
-
2
y1
),M(
y12
8
+
2
y12
y1
2
-
2
y1
)

显然RMx轴
(2)PR与x轴交于A(-
y21
4
,0)

若RM平分∠PRF,且RMx轴
∴|AR|=|RF|
y21
4
-1=2,
y21
=12

y1>0∴y1=2
3

∴P(3,2
3
),又F(1,0)
PF:y=
3
(x-1)

即直线PQ的方程为y=
3
(x-1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD,AE,且AD,AE的斜率k1、k2满足k1•k2=2,试推断:动直线DE是否过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线L:x=-1,P为平面上的动点,过点P作直线L的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求点P的轨迹C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,若
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)过点M(-1,0)作直线m交轨迹C于A,B两点.
(Ⅰ)记直线FA,FB的斜率分别为k1,k2,求k1+k2的值;
(Ⅱ)若线段AB上点R满足
|MA|
|MB|
=
|RA|
|RB|
,求证:RF⊥MF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1,点P为平面上的动点,过点P作直线l的垂线,垂足为点Q,且
QP
FQ
=
PF
FQ
,则动点P的轨迹C的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),动点P到直线x=-2的距离比到F的距离大1.
(1)求动点P所在的曲线C的方程;
(2)A,B为曲线C上两动点,若|AF|+|BF|=4,求证:AB垂直平分线过定点,并求出该定点.

查看答案和解析>>

同步练习册答案