分析 ( 1)由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20.由此能求出从该班中任选两名学生,他们参加活动次数恰好相等的概率,继而求出不等的概率;.
(2)从该班中任选两名学生,用ξ表示这两学生参加活动次数之差的绝对值,则ξ的可能取值分别为:0,1,2由此能求出ξ的分布列和ξ的数学期望;
(3)根据函数零点定理,可得f(3)?f(5)<0,求出η的值,再根据古典概率求出事件A发生的概率.
解答 解:(1)从该班任取两名学生,他们参加活动的次数恰好相等的概率:
P=$\frac{{C}_{5}^{2}+{C}_{25}^{2}+{C}_{20}^{2}}{{C}_{50}^{2}}$=$\frac{20}{49}$,故P=1-$\frac{20}{49}$=$\frac{29}{49}$.
(2)从该班中任选两名学生,用ξ表示这两学生参加活动次数之差的绝对值,则ξ的可能取值分别为:0,1,2,
于是P(ξ=0)=$\frac{20}{49}$,P(ξ=1)=$\frac{{C}_{5}^{1}{C}_{25}^{1}+{C}_{20}^{1}{C}_{25}^{1}}{{C}_{50}^{2}}$=$\frac{25}{49}$,
P(ξ=2)=$\frac{{C}_{5}^{1}{C}_{20}^{1}}{{C}_{50}^{2}}$=$\frac{4}{49}$,从而ξ的分布列为:
| ξ | 0 | 1 | 2 |
P | $\frac{20}{49}$ | $\frac{25}{49}$ | $\frac{4}{49}$ |
点评 本题考查离散型随机变量的分布列和数学期望,考查学生的运算能力,考查学生探究研究问题的能力,解题时要认真审题,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,体现了化归的重要思想.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com