精英家教网 > 高中数学 > 题目详情
19.若等差数列{an}的公差为d,前n项的和为Sn,则数列{$\frac{{S}_{n}}{n}$}为等差数列,公差为$\frac{d}{2}$.类似,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则等比数列{$\root{n}{{T}_{n}}$}的公比为(  )
A.$\frac{q}{2}$B.q2C.$\sqrt{q}$D.$\root{n}{q}$

分析 在等比数列{bn}中应研究前n项的积为Tn的开n方的形式,类比等差数列可得$\root{n}{{T}_{n}}$=b1($\sqrt{q}$)n-1.由此能求出其公比.

解答 解:∵在等差数列{an}中前n项的和为Sn的通项,且写成了 $\frac{{S}_{n}}{n}$=a1+(n-1)×$\frac{d}{2}$.
所以在等比数列{bn}中应研究前n项的积为Tn的开n方的形式.
类比可得$\root{n}{{T}_{n}}$=b1($\sqrt{q}$)n-1.其公比为$\sqrt{q}$.
故选:C.

点评 本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.tan18°+tan222°+$\sqrt{3}$tan18°tan222°的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列不等式一定成立的是(  )
A.x2+$\frac{1}{4}$>x(x>0)B.x2+1≥2|x|(x∈R)
C.sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)D.$\frac{1}{{{x^2}+1}}$>1(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=log2|x|.
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性、单调性;(不必证明 )
(3)画出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.己知x,y都是正数,且x2+2y2=$\sqrt{2}$,则$\frac{1}{x}$+$\frac{2}{y}$的最小值是$\frac{{3}^{\frac{3}{2}}}{{2}^{\frac{1}{4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点M(-1,2,-3)关于原点的对称点是(1,-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ.”该过程应用了(  )
A.分析法B.综合法C.间接证明法D.反证法

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若正实数x,y满足x+$\frac{1}{x}+y+\frac{1}{y}$=5,则xy的取值范围为[$\frac{1}{4}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sin(2x+$\frac{π}{3}$)的周期为π,在(0,$\frac{π}{2}$]内的值域为[-$\frac{\sqrt{3}}{2}$,1].

查看答案和解析>>

同步练习册答案