精英家教网 > 高中数学 > 题目详情
4.点M(-1,2,-3)关于原点的对称点是(1,-2,3).

分析 根据空间直角坐标系中两个关于原点的对称点的坐标特点:“关于原点对称的点,横坐标、纵坐标、竖坐标都互为相反数”进行解答.

解答 解:由空间直角坐标系中关于原点对称的点的坐标特点:横坐标、纵坐标、竖坐标都互为相反数,可得点M(-1,2,-3)关于坐标原点的对称点的坐标为(1,-2,3),
故答案为:(1,-2,3).

点评 解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标、竖坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标、竖坐标互为相反数;
(3)关于原点对称的点,横坐标、纵坐标、竖坐标都互为相反数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.当a取不同实数时,直线(2+a)x+(a-1)y+3a=0恒过一个定点,这个定点的坐标为(-1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知复数z=(1+i)(2-i),则|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{xn}满足x1=1,x2=λ,并且$\frac{{x}_{n+1}}{{x}_{n}}$=λ$\frac{{x}_{n}}{{x}_{n-1}}$(λ为非零常数,n=2,3,4,…).
(Ⅰ)若x1,x3,x5成等比数列,求λ的值;
(Ⅱ)设0<λ<1,常数k∈N*,证明$\frac{{{x_{1+k}}}}{x_1}+\frac{{{x_{2+k}}}}{x_2}+…+\frac{{{x_{n+k}}}}{x_n}<\frac{λ^k}{{1-{λ^k}}}(n∈{{N}^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若等差数列{an}的公差为d,前n项的和为Sn,则数列{$\frac{{S}_{n}}{n}$}为等差数列,公差为$\frac{d}{2}$.类似,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则等比数列{$\root{n}{{T}_{n}}$}的公比为(  )
A.$\frac{q}{2}$B.q2C.$\sqrt{q}$D.$\root{n}{q}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A、B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,输出的S值为(  )
A.15B.105C.245D.945

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a,b,x,y∈(0,+∞),且ab=4,x+y=1.
求证:(ax+by)(bx+ay)≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,则函数f(x)的最小正周期为π,将f(x)图象向左平移φ($\frac{π}{2}$<φ<π)个单位长度后得到函数为偶函数,则φ=$\frac{7π}{12}$.

查看答案和解析>>

同步练习册答案