精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A、B两点,求弦AB的长.

分析 (1)利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可把极坐标方程化为直角坐标方程,消去参数即可得到普通方程;
(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2-8t+7=0,利用根与系数的关系、弦长公式即可得出.

解答 解:(1)由曲线C的极坐标方程是:$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$,得ρ2sin2θ=2ρcosθ.
∴由曲线C的直角坐标方程是:y2=2x.
由直线l的参数方程$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$,得t=3+y代入x=1+t中消去t得:x-y-4=0,
所以直线l的普通方程为:x-y-4=0.
(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2-8t+7=0,
设A,B两点对应的参数分别为t1,t2
则t1+t2=8,t1t2=7.
则$|{AB}|=\sqrt{2}|{{t_1}-{t_2}}|=\sqrt{2}\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{2}\sqrt{{8^2}-4×7}=6\sqrt{2}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、一元二次方程的根与系数的关系、弦长公式、参数的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$=(5,12),|$\overrightarrow{a}$-$\overrightarrow{b}$|=3,则|$\overrightarrow{b}$|的取值范围为[10,16].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若三角形三边分别为AB=7,BC=5,AC=6,则$\overrightarrow{BA}•\overrightarrow{BC}$=(  )
A.19B.18C.-18D.-19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若cos(α+$\frac{π}{2}$)=-$\frac{1}{2}$,α∈($\frac{π}{2}$,π),则cos(π-α)值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点M(-1,2,-3)关于原点的对称点是(1,-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=sin(x+1)$\frac{π}{3}$-$\sqrt{3}$cos(x+1)$\frac{π}{3}$,则f(1)+f(2)+f(3)+…+f(2011)=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数f(x)=sin(x+$\frac{π}{3}$)+2sin(x-$\frac{π}{3}$)的周期及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\frac{3π}{5}$弧度化为角度是(  )
A.110°B.160°C.108°D.218°

查看答案和解析>>

同步练习册答案