| A. | 19 | B. | 18 | C. | -18 | D. | -19 |
分析 根据条件由余弦定理便可求出cosB的值,从而根据向量数量积的计算公式即可求出$\overrightarrow{BA}•\overrightarrow{BC}$的值.
解答 解:如图,![]()
在△ABC中,AB=7,BC=5,AC=6,则:
由余弦定理得,$cosB=\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}=\frac{49+25-36}{70}$=$\frac{19}{35}$;
∴$\overrightarrow{BA}•\overrightarrow{BC}=|\overrightarrow{BA}||\overrightarrow{BC}|cosB=35×\frac{19}{35}=19$.
故选:A.
点评 考查余弦定理,以及向量数量积的计算公式.
科目:高中数学 来源: 题型:选择题
| A. | {β|β=-$\frac{π}{4}$} | B. | {β|β=$\frac{3π}{4}$} | C. | {β|β=-$\frac{π}{4}$或$\frac{3π}{4}$} | D. | {β|β=$\frac{3π}{4}$+kπ,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | -6 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com